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MATEMATIKA

Zména délky dne a derivace funkce

Ludék Spichal, Ceskd lesnickd akademie, Trutnov

Kazdy z nés si béhem roku v§ima, Ze se dny a noci proménuji. Pravi-
delné zmény délky dne v pribéhu roku bereme jako naprosto samoziej-
mou soucést prirodnich cykli. Zatimco v zimé vstavame casto jesté za
tmy a stmiva se brzy odpoledne, v 1été si uzivame dlouhé svétlé vecery.
Na obr. 1 jsou znazornéné Casy vychodi a zapada Slunce v pribéhu
roku na 50° severni Siftky a 15° vychodni délky (stfedoevropsky cas,

SEC) v roce 2025
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Obr. 1: Vychody a zapady Slunce (SEC) v roce 2025 na 50° s. §. a 15° v. d.

Délka dne, tedy ¢as mezi vychodem a zdpadem Slunce, se béhem roku
neustale méni. Nejkratsi den nastava v dobé& zimniho slunovratu (kolem
21. prosince), nejdelsi naopak v letnim slunovratu (kolem 21. ¢ervna).
Mezi témito dvéma body se den zkracuje nebo prodluzuje, rychlost této
zmény neni ovSem vzdy stejna.

Naprtiklad béhem jara se den muze prodluzovat az o t¥i a ptl minuty
denné, zatimco v obdobi kolem letniho slunovratu se méni jen nepatrné.
Tato proménliva rychlost zmény délky dne je celkem intuitivni. Zatimco

D Zdroj: https://www.myslivost.cz/Pro-myslivce/Informace-pro-myslivce/
Vychody-a-zapady-Slunce-a-Mesice
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v bfeznu si prodluzovani dne vSimneme skoro kazdym dnem, v ¢ervenci
si rozdilu prakticky nev§imneme.

Duvodem existence tohoto jevu typického pro stfedni zemépisné §iik;
je naklonéni zemské osy vici roviné drahy kolem Slunce zhruba o 23,5°
Proto se béhem roku stiida thel, pod kterym sluneéni paprsky dopadaji
na dané misto. Na 50° s. 8. (pfibliZna poloha Ceské republiky) trva nej-
kratsi den kolem zimniho slunovratu asi 8 h 5 min, zatimco nejdelsi den
v obdobi letniho slunovratu dosahuje zhruba 16 h 14 min Mezi témito
extrémy se délka dne vyviji relativné hladce a periodicky. Na grafu pak
vypadé témér jako Cista sinusoida (obr. 2).
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Obr. 2: Délka dne (50° s. &., 15° v. d.)

Zatimco délka dne se méni plynule a pomérné snadno piedvidatelné,
rychlost téchto zmén se béhem roku vyrazné lisi. V blizkosti rovnoden-
nosti (kolem 21. bfezna a 23. zaf{) se den prodluZzuje nebo zkracuje

oo

nejrychleji. V naSich zemépisnych $ifkach to znamena az nékolik minut

2)Naklonéni zemské osy (tzv. sklon ekliptiky) m& vliv nejen na délku dne, ale i
na st¥idani rocnich obdobi. Tento sklon neni neménny, s velmi dlouhou periodou se
mirné méni (tzv. nutace a precese), coz ma vliv i na dlouhodobé klimatické zmény
(napf. Milankovicovy cykly).

3)Zminéné zmény jsou vyrazné zavislé na zemépisné Sifce. V tropickych i polarnich
oblastech tak zaznamename zna¢né odlisné pomeéry. V tropickych oblastech pobliz
rovniku (zemépisna sifka 0°) je délka dne témé¥ stejné po cely rok — pfiblizné 12 ho-
din. Rano slunce vychazi kolem 6. hodiny a zapada okolo 18. hodiny, s jen malymi
sezénnimi vykyvy. V polarnich oblastech (nad 66,5° severni nebo jizni sifky) dochazi
k extrémtm — v 1été nastava obdobi tzv. polarniho dne, kdy Slunce nezapada viibec, a
v zimé naopak polarni noc, kdy Slunce viibec nevychézi. Naptiklad na severu Norska
trva polarni den nékolik tydni.
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denné. Naopak v obdobi slunovrata (kolem 21. Eervna a 21. prosince)
se délka dne méni nejpomaleji, zustava stejni. A pravé zde pfichéazi ke
slovu pojem, ktery je zdkladem nejen matematiky, ale i fyziky, techniky
a prirodnich véd obecné — derivace. Zatimco funkce popisuje, jaka je na-
priklad délka dne v ur¢itém okamziku, derivace nam tika, jak rychle se
tato veli¢ina méni. Jinymi slovy feceno plati, ze derivace odpovida na
otazku ,jak rychle roste nebo klesa* délka dne [3].

V ¢lanku se podivame na to, jak muzeme pomoci goniometrickych
funkci popsat jak zménu délky dne v prabéhu roku, tak rychlost zmény
délky dne. V obecné roving si pfedstavime pojem derivace funkce a uka-
zeme, ze funkce popisujici rychlost zmény délky dne velmi dobfe od-
povida derivaci funkce délky dne. Pfitom vyuZijeme realna data a uka-
zeme, Ze i néco tak zdanlivé ,obycejného”, jako je stfidani dne a noci,
miZze v sobé ukryvat fascinujici matematicky rytmus. Pojem derivace
funkce tak nebude jen abstraktnim matematickym pojmem, ale velmi
uzite¢nym nastrojem pro porozuméni svétu kolem nas.

Délka dne a graf funkce sinus
V uvodu jsme zminili, ze graf délky dne v prubéhu roku svym tvarem
odpovida grafu funkce sinus. V této kapitole se pokusime ukézat, Ze
kiivku délky dne lze skuteéné aproximovat pomoci grafu funkce sinus.
Piedpokladejme, Ze hledana funkce urcujici délku dne (v hodinéch),
kde t je ¢islo dne v roce (napi. t = 1 je 1. leden, t = 172 je 21. ferven
apod.), mé tvar

L(t) = A+ Bsin (C(t— D)). (1)
Pro jednotlivé parametry rovnice plati, ze:

e A je stfedni délka dne (hod), ktera predstavuje aritmeticky primér
délek dnit za cely rok, v modelu je A ~ 12,26.

e B je amplituda grafu funkce sinus (hod v modelu je
Lmax - Lmzn 1 72 - O
B 6,233 — 8,083

= =4,08.
2 2 ’
e C je thlova frekvence (rad/den), udavajici, o kolik radiani se fa-
zovy thel posune za jediny den, v modelu je C' = %.

4)Pro vypodet amplitudy byly uvazovany nasledujici hodnoty: nejkratsi den — 8 hod
5 min, nejdelsi den — 16 hod 14 min.
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e D predstavuje (fazovy) posun tak, aby maximum funkce pfipadlo
na letni slunovrat (¢t = 172). Funkce urcena rovnici (1)) ma maxi-

mum, kdyz
27(t — D)
o (TP =P)
sm< 365 > =
2r(t — D
L2 =D) T D g195— D=t 9125

365 2

Pokud je t = 172, pak D = 172 — 91,25 = 80,75. Po tupravé a
dosazeni do rovnice dostavame funkei

2
L(#) ~ 12,26 + 4,08 sin (36775@ - 80,75)) . (2)

Na obr. 3 vidime srovnani grafu skuteénych délek dne a grafu funkce .
Funkce se blizi skuteénym hodnotam, ale neni s nimi zcela totozna. Po-
uzita aproximujici funkce dobie vystihuje periodickou povahu jevu (stii-
dani délky dne). Velikost odchylky od realnych hodnot je mozné kvanti-
fikovat napf. pomoci stredni kvadratické chyby

Skutecné délka dne
~ -=- Ln

Délka dne (hodiny)
- - -
= X 7
N
.
.
e
-

=
=)
S
b
-

©
\,
/

1.1 21.3 21.6 23.9 21.12
Datum

Obr. 3: Srovnani skuteénych délek dne (50° s. §., 15° v. d., plna ¢ara) a grafu
funkce (2

5)Stiedni kvadraticks chyba se oznatuje také jako root mean square error, ve
zkratce RMSE. RMSE umoziuje mérit, jak daleko se primérné predpovédi modelu
lisi od skute¢nych hodnot. Mensi hodnota RMSE znamena lepsi shodu se skute¢nosti.
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V naSem pfipadé ¢ini stfedni kvadratickd chyba empirického modelu
cca 0,12 hod, tedy cca 7 min. Vypocet stfedni kvadratické chyby zna-
mené, ze porovnavame hodnoty modelu s hodnotami skuteénymi. Napii-
klad nas model tvrdi, ze 100. den v roce trva cca 13,59 hodiny, i kdyz ve
skute¢nosti trval cca 13,48 hodiny. Rozdil je tedy cca 0,11 hodiny. Takové
rozdily ur¢ime pro kazdy den v roce. Kazdy rozdil dale umocnime, aby
se nezrusily pfi nasledném s¢itani kladné a zaporné hodnoty (napi. —0,3
a +0,3 davaji 0,09). Pokud sefteme vSechny tyto ¢tverce a vydélime
poc¢tem dni, pak dostaneme primérnou kvadratickou chybu. Nakonec
z toho vezmeme odmocninu, abychom ziskali vysledek opét ve stejnych
jednotkéch jako pivodni rozdily (v naSem piipadé v hodinach) [2].

Vedle vlastniho modelu délky dne muzeme uvést ndvrh modelu vy-
tvofeny pomoci jazykového modelu ChatGPT (OpenAl), ktery navrhl
néasledujici funkci

2
Lo (t) ~ 12,27 + 3,99 sin (%(t - 81,9)). (3)

Tato funkce vykazuje stfedni kvadratickou chybu pfiblizné 6,5 minuty@

Zmény délky dne a graf funkce kosinus

Jiz v tvodni ¢asti jsme zminovali proménlivou rychlost zmény délky
dne v prubéhu roku. Na obr. 4 miiZzeme sledovat zménu délky dne, ktera
v pribéhu roku dosahuje svého maxima v obdobi rovnodennosti a mi-
nima v obdobi slunovratu. Kladné hodnoty oznacuji dny, kdy se den
prodluzoval, zaporné hodnoty naopak jeho zkracovani.

Lomena kfivka v grafu byla dale vyhlazena tak, aby bylo mozné ro¢ni
rytmus zmény délky dne lépe pozorovat. Pouzité gaussovské vyhlazeni
funguje tak, ze se pro kazdy den vypo¢ita pramér z okolnich dnﬁ Ne-
jedna se ovSem o bézny aritmeticky pramér, nybrz vazeny prumér, kde
nejvétsi vahu maji dny nejblize a ¢im jsou dny vzdalenéjsi, tim mensi
maji vliv. Tento zptlisob vazeni se ¥idi Gaussovou kfivkou, ktera ma zvo-
novity tvar

6)Modelova funkce byla ziskana s vyuZzitim nastroje ChatGPT (model GPT-4-
turbo, OpenAl) dne 14. &ervna 2025.

7)Carl Friedrich Gauss (1777-1855) byl némecky matematik, jeho prace ovlivnila
mnoho oblasti matematiky, statistiky a fyziky. Je po ném pojmenovana nejen Gaus-
sova kfivka (normalni rozdéleni), ale i napiiklad metoda nejmensich &tverct nebo
Gaussuv zakon v elektrostatice.

8)Vice o metod& vyhlazeni napf. https://en.wikipedia.org/wiki/Smoothing,
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Zména délky dne
—— Gaussovsky vyhlazena kfivka
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Obr. 4: Graf zmén délek dne v roce 2025 (50° s. 8., 15° v. d.) a jeho gaussovské
vyhlazeni

Vyhlazené kiivka tedy neukazuje pfesné denni zmény, ale jejich ply-
nuly primér, ktery pomahé lépe zachytit celkovy rytmus prodluzovani
a zkracovani dne béhem roku, kde maximélni rychlost zmény nastéva
kolem jarni a podzimni rovnodennosti a minimum kolem slunovrati.

I v pripadé grafu rychlosti zmény délky dne zaznamenavéame perio-
dické zmény odpovidajici jisté goniometrické funkce. Soucasné si mi-
7eme vzhledem ke grafu délek dna (obr. 3) v8imnout uréitého fazového
posunu, ktery odpovida zhruba 1/4 roku. Pro sestaveni modelu tedy v
tomto piipadé pouzijeme funkci kosinus, kterd ma maximum posunuté
o 7/2, tj. budeme pfedpokladat funkci ve tvaru

L.(t) = A, + B, cos (Cz(t - DZ)). (4)

Pro jednotlivé parametry rovnice plati, ze:
e A, jestfedni hodnota zmény délky dne (min), pfedstavujici aritme-
ticky prameér zmeén délek dnu za cely rok, v modelu je A, ~ —0,01.
e B, je amplituda grafu funkce kosinus (min), v modelu je B, = 5.
o C. = 2% je thlové frekvence (rad/den).

e D, predstavuje posun tak, aby nulovd hodnota zmény délky dne
pfipadla na letni slunovrat (¢ = 172). Funkce ur€ené rovnici
ma nulovou hodnotu, kdyz

https://en.wikipedia.org/wiki/Gaussian_filter?utm_source=chatgpt.com,
https://medium.com/data-science/gaussian-smoothing-in-time-series-data-
c6801f8a4dc3
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2rn(t —D.)\
cos( 365 ) =0=

2r(t—D,) =
2 — _ =t-D,=0912 D, =1t—91,25.
= 365 5 = 91,25 = 91,25
Pokud je t = 172, pak
D, =172 —91,25 = 80,75.

Po dpraveé a dosazeni do rovnice dostavame funkci

2
L.(t) ~ —0,01 + 5 cos (%(t - 80,75)). (5)

Nalezena funkce vykazuje stfedni kvadratickou chybu pfiblizné€ 0,51 mi-
nuty (30 vtefin).

Zména délky dne (minuty)

% N
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Datum

Obr. 5: Srovnani grafu délek dne v roce 2025 (50° s. §., 15° v. d.) a aproximace

pomoci funkce

Model ChatGPT (OpenAl) navrhl nasledujici funkei

2
Laom(t) ~ 0,01 + 4,13 cos (%(t - 82,28)). (6)

Tato funkce podle modelu vykazuje stfedni kvadratickou chybu pfiblizné
0,31 minuty (19 vtefin) )]

9)Modelova funkce byla ziskana s vyuzitim nastroje ChatGPT (model GPT-4-

turbo, OpenAl) dne 18. Gervna 2025.
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. JuE—— ~ — Gaussovsky vyhlazena zména

=== Lmld)

Zména délky dne (minuty)
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Datum
Obr. 6: Srovnan{ grafu délek dne v roce 2025 (50° s. 8., 15° v. d.) a aproximace
pomoci funkce @

Zména délky dne a derivace funkce

Pokud nyni shrneme ptedchozi pozorovéani, pak muzeme konstatovat,
ze délku dne i zménu délky dne lze aproximovat goniometrickou funkei.
Nasim zamérem bude nyni ukézat, Ze jestlize funkce L(t) (resp. L, (t))
predstavuje aproximaci délky dne, pak funkce L, (t) (resp. L., (t)) jako
funkce aproximujici zménu délky dne je jeji derivaci

Pojem derivace funkce zde predstavime stru¢né v obecné podobé, se
zaméfenim na vyznam pojmu derivace

V realném svété se derivace nejcastéji preklada jako okamzita ¢asova
zména. U jizdy automobilu je derivaci jeho drahy okamzita rychlost vozu,
derivaci jeho rychlosti je zrychleni nebo zpomaleni. Sledujeme-li pri-
mérnou denni teplotu, derivace udava tempo oteplovani ¢i ochlazovani.
U délky dne derivace zase fik4, o kolik minut se den pravé prodluzuje
¢i krati. Pritom jednotky derivace vzdy prozradi, co méfime: metry za
sekundu, stupné Celsia za hodinu, minuty za den a podobné

10)Slovo ,derivace® pochazi z latinského ,derivare’ znamenajici ,odvadét* nebo ,0d-
vozovat®, doslova ,vést od néceho“. Derivace je ,odvozena hodnota“, kterd vychazi
z puvodni funkce. Neni tedy nécim, co existuje samo o sobé, ale vznika z funkce jako
novy udaj, jako jeji ,odvozenina‘“.

D Pojem derivace vznikl v 17. stoleti v souvislosti s rozvojem infinitezimalniho
poctu. Zakladateli diferencialniho po&tu byli nezavisle na sob& Isaac Newton (1643—
1727) a Gottfried Wilhelm Leibniz (1646-1716), pfi¢emz Newton pojem odvozoval
z fyziky (rychlost), zatimco Leibniz rozvijel spiSe forméalni symboliku. Podobnymi
problémy jako Newton a Leibniz se jiz ve 30. letech 17. stoleti zabyval i P. de Fermat,
ktery hledal maximalni a minimalni hodnoty funkci — tedy pfipady, kdy je zména
nulova.

12)Znalost okamzité rychlosti zmény je cenné i proto, ze tam, kde derivace prechazi
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Jestlize budeme nyni sledovat obr. 7, pak primérnou zménu (napf.
pramérnou rychlost) v uréitém intervalu (napf. mezi body A a B) si
geometricky muzeme piedstavit jako sklon tuseCky spojujici tyto dva
body (se¢na). Pokud bychom rovnici seény zapsali ve smérnicovém tvaru
y = kx + ¢, pak primérné rychlost je hodnota smérnice k.

- kfivka y = sin(x)
x —=— sefna AB

— tecnavA

0.0F

0.0 0.5 1.0 1f5 2.0 2.5 3.0
X (radiany)

Obr. 7: Primérna a okamzita (derivace) zména

Budeme-li nyni bod B pfiblizovat k bodu A tak, Ze zmenSime inter-
val na nekoneéné malou (infinitezimalni) hodnotu, pak se seéna proméni
v te¢nu, ktera se kiivky dotyka jen v jediném bodé A. Sklon te¢ny v bodé
A prozrazuje okamzitou zménu (okamzitou rychlost), tedy derivaci. Po-
kud bychom rovnici te¢ny zapsali ve smérnicovém tvaru y = mx +r, pak
hodnota smérnice te¢ny m je okamzita rychlost v bodé A, tedy derivace
funkce v A|'®)| Derivaci funkce L(t) budeme oznadovat symbolem L'(¢).

z kladné do zaporné hodnoty (nebo naopak), dosahuje kiivka svého vrcholu ¢&i dna.
Tak lze zjistit nejvyssi denni teplotu, maximalni trzby podniku nebo nejdelsi den
v roce bez nutnosti prohlizet kazdy bod grafu.

BK aplnému porozuméni a zvladnuti pojmu derivace nestaci jen védét, Ze jde
o rychlost zmény. Zakladem je pochopeni, co je funkce a jak se jeji hodnoty méni.
Dulezité je umét ¢ist grafy funkei a rozpoznat, kdy funkce roste nebo klesa. Derivace
funkce je v moderni matematice zalozena na pojmu limity funkce. Ctenar by mél vé-
dét, co znamen4, kdyz ,priblizujeme dva body k sobé&“, a jak limitni pfechod, kdy je
prirtistek vstupu funkce nekoneéné maly, vede k okamzité zméné. Pro vyuziti derivace

Roénik 100 (2025), cislo 4 9



MATEMATIKA

Pro konkrétni vypocet derivace funkce sinus, které popisuje délku dne,
nebudeme uvadét podrobny matematicky postup. Pro pfesny vypocet 1ze
vyuzit fadu volné dostupnych nastroji na internetu Tyto nastroje
umoziuji nejen vypocet derivace, ale ¢asto také jeji grafické znazornéni
¢i krokové feSeni. Pro derivaci funkce plati

27 2w 2w
L'(t) ~ 408 —L . (—t—80,75)=0,07- (—t—80,75>,
®) 365 (365 ) <05 { 365 )
nebot derivaci funkce sinus je funkce kosinus.

Pokud dale amplitudu funkce L'(t) vyjadiime rovnéz v minutach, kde

B = 0,07 hod = 4,2 min, pak muzeme provést srovnani grafi funkeci
L'(t), L.(t) a L.m(t) (obr. 8).

--- Lt

=] N B

Zména délky dne (minuty)
1
]

-4

‘Qx 'QN I@ pb & N & & ,Sb g :»0
P & i
» »

Obr. 8: Srovnani grafii funkei L'(t), L:(t) a L.m(t)

Stfedni kvadratickd chyba mezi funkcemi L'(t) a L.(t) je pfiblizné
0,57 minuty, mezi funkcemi L'(t) a L, () pak pfiblizné 0,1 minuty.

Funkce pro zménu délky dne L, (t) i L., () skutecné odpovida derivaci
funkce délky dne, od které se lisi pouze méfitkem. Je to tedy derivace az
na konstantni nasobek a posun, coz je pfesné to, co bychom c&ekali pii

je tfeba zvladnout zakladni pravidla pro jeji vypocet, pravidla pro derivace elemen-
tarnich funkci, pravidla pro derivace sou¢ti, sou¢intu ¢ podilta funkei apod. Ctenaf by
soufasné mél umét pouzit derivaci p¥i popisu konkrétniho jevu (napf. zména délky
dne) a interpretovat vysledek, nap¥. kdy je zména nejrychlejsi nebo kdy se zastavi.
14)Nap¥. Symbolab: Derivative Calculator
(https://www.symbolab.com/solver/derivative-calculator),
GeoGebra CAS kalkulacka (https://www.geogebra.org/classic/cas),
WolframAlpha (https://www.wolframalpha.com/input/?i=derivative)
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porovnéani fyzikalni derivace a empirického pfepoc¢tu v jinych jednotkéach
(hodiny vs. minuty).

Jisté existuje cela fada prirodnich cykla, které maji periodicky cha-
rakter a lze je amproximovat pomoci goniometrickych funkci. Z dalsich
muzeme zminit nap¥. zmény vysky hladiny mof¥i jako disledek stiidaji-
ciho se pfilivu a odlivu, zménu délky stinu v zavislosti na poloze Slunce,
zménu teploty pudy v pribéhu roku, faze Mésice apod [I1 4]

Ctenaf si miize oveFit Gvahy zminéné v éanku na nasledujici tloze
tykajici se zmény teploty vzduchu v pribéhu roku (poznamky k feSeni
jsou v Piiloze A).

Problém. V tab. 1 je uveden normal primérnych mési¢nich teplot
v Trutnové Na obr. 9 je graf teplot z tab. 1 a dale graf mezimési¢nich
zmén teplot.

Meésic Leden Unor Biezen Duben  Kvéten Cerven
Normal —-29 -0,9 2,0 7,2 12,0 15,8

Msesic | Cervenec Srpen Zari Rijen Listopad  Prosinec
Normal 16,8 16,3 12,3 7.7 2,7 -1,1

Tab. 1: Normal pramérnych mési¢nich teplot v Trutnové

1. Urcete predpisy funkci aproximujicich graf primérnych mési¢nich tep-
lot a graf mezimési¢nich zmén teplot vzduchu v Trutnové.
2. Porovnejte (pomoci grafu) nalezené aproximujici funkce s grafem pri-

mérnych mési¢nich teplot a grafem mezimési¢nich zmén teplot vzdu-
chu.

3. Urcete stfedni kvadratickou chybu (RMSE) pro modely pramérnych
mésicnich teplot i mezimési¢nich zmén teploty vzduchu.

4. Derivaci funkce pramérnych mési¢nich teplot srovnejte s funkei me-
zimési¢nich zmén teplot.

5. Vyzkousejte Al pro vytvoreni modelovych funkci a uréeni RMSE. Po-
rovnejte tyto modely s empirickymi modely z bodu 1.

15) Periodické jevy jako pfiliv a odliv popisoval uz v 17. stoleti Galileo Galilei (1564—
1642). Jeho pozorovani mési¢nich fazi, pohybu planet i mofskych jevi vedla k hlub-
Simu chapani rytmu v prirodé.

16)Normal teploty vzduchu je priimérna hodnota teploty, ktera je vypoctena z dlou-
hodobého sledovani pocasi. Typicky se pocita za obdobi 30 let podle metodiky Svétové
meteorologické organizace (WMO).
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Normal teploty

15 —a— Mezimési¢nl zména teploty
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Obr. 9: Graf pramérnych mési¢nich teplot vzduchu a mezimési¢nich zmén tep-
lot vzduchu v Trutnové
Zaveér

Obsah ¢lanku o zméné délky dne jako modelu periodického ptirodniho
jevu nabizi piilezitost propojit vyuku goniometrickych funkci s realnym
svétem. Funkce sinus a kosinus tak nejsou jen abstraktni matematické
objekty, ale naopak velmi uzite¢né nastroje k popisu pravidelné se opa-
kujicich jevi v prirodé. Konkrétné bylo ukazano, jak parametry téchto
funkci — amplituda, perioda, fazovy posun a vertikalni posun — odpovi-
daji skuteénym charakteristikaAm délky dne b&hem roku.

V ¢lanku jsme vyuzili i moZnosti, které nabizi uméla inteligence (AI).
Modely, které jsme takto ziskali, poskytly piesnéjsi pfizpiisobeni mo-
deli redlnym dattim nez ru¢né ziskané modely. Jednim ze zasadnich
davodt, pro¢ model navrzeny pomoci AI (napf. ChatGPT) vykazuje
nizsi stfedni kvadratickou chybu nez ru¢né odvozena funkce, je pouziti
numerické optimalizace. Al model hleda takové parametry funkce (napii-
klad stfedni hodnotu, amplitudu, frekvenci a fazovy posun), které vedou
k co nejmensi chybé mezi modelem a redlnymi daty. Tento pristup je
vypocetné narocnéjsi, ale umoznuje presnéjsi prizptsobeni modelu kon-
krétnimu datovému souboru.

Zatimco ru¢né odvozena funkce se ¢asto snazi presné vystihnout kon-
krétni klicovy bod (naptiklad délku dne pii letnim slunovratu), Al mo-
del bere v avahu chybu napfi¢ celym rokem a snazi se ji rovnomérné
minimalizovat. Vysledkem byva model, ktery nemusi perfektné odpovi-
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dat fyzikalni interpretaci (napf. maximalné pfesny den slunovratu), ale
poskytuje mensi celkovou odchylku.
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Priloha

Predpokladejme, ze funkce aproximujici primérné teploty vzduchu ma
tvar odpovidajici rovnici . Podle tab. 1 plati, ze A = 7,51 a B = 9,85.
Uhlova frekvence funkce odpovida poétu mésicii v roce, tj. C' = 27/12 =
= 71/6. K odhadu fazového posunu D uvéazime fakt, Ze maximum teploty
nastava v ¢ervenci (¢t = 7). Funkce ur¢ena rovnici (1)) ma maximum, kdyz

sin<7r(t6D))lé7r(t6D)g:>tD3:>Dt3.

Pokud je maximum teploty vt =7, pak D =7 — 3 = 4. Po dosazeni do
rovnice plati, Ze funkce aproximujici primérné teploty vzduchu mé
tvar (obr. 10 vlevo)

L(t) = 7,51 + 9,85 sin (%(t - 4)). (7)

Predpokléddejme, Ze funkce aproximujici mezimési¢ni zmény teploty
vzduchu méa tvar odpovidajici rovnici .

Podle tab. 2 plati, ze A, = 0 a B, = 5,1. Uhlova frekvence funkce
odpovida po¢tu mésici v roce, tj. C, = 27/12 = /6.
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Mesic Leden  Unor Biezen Duben Kvéten Cerven
Zména teploty —-1,8 2,0 29 5,2 4.8 3,8

Mesic Cervenec Srpen  Zari Rijen Listopad Prosinec
Zména teploty 1,0 -0, —40 —46 -5,0 -3,8

Tab. 2: Mezimési¢ni zmény teploty vzduchu

K odhadu fazového posunu D, uvazime fakt, Ze maximalni zména
teploty vzduchu nastava v dubnu (¢ = 4). Funkce uréena rovnici (4) ma
maximum, kdyz

-D -D
COS(7T(t62)):1$7T(t62):O:>t_DZ:0:DZ:t

Pokud maximélni zména teploty nastava v ¢ = 4, pak D, = 4, a funkce
aproximujici pramérné teploty vzduchu ma tvar (obr. 10, vpravo)

L.(t) = 5,1 cos (%(t—4)). (8)
- f“ e @(f \‘fv \Lfv ;Ee,v i(ﬁ; & I & & § & p & ¢ ) & &

Obr. 10: Porovnani realnych dat s modelovymi funkcemi pro primérné mésiéni
teploty vzduchu (vlevo), mezimési¢ni zmény teplot vzduchu (vpravo)

Stiedni kvadratickd chyba pro model primérnych mésiénich teplot
uréeny rovnici je cca 0,7 °C, stfedni kvadratickid chyba pro model
mezimési¢nich zmén teploty vzduchu uréeny rovnici je cca 1,12 °C.
Pro derivaci funkce teploty vzduchu plati

L'(t) ~ 9,85 - % - cos (%(t - 4)) = 5,15 - cos (%(t - 4)).

Srovnani funkei L'(t) a L,(t) ukazuje maly rozdil v amplitudg, stfedni
kvadraticka chyba ¢ini cca 0,04 °C.
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Ciselna charakteristika podobnych trojahelnik

Viastimil Dlab, Bzi u Zelezného Brodu

Clanek [2] poukazal na dilezitost pojmu podobnost trojihelniki pii
studiu rovinné geometrie. Pfitom znovu podtrhl roli komplexnich é&isel,
zdiraznénou uz v udebnici [I]. V tomto ¢lanku popiSeme bijekei svazujici
podobné trojahelniky a komplexni ¢isla.

Stejné jako v [2] je na§ modus operandi komplexni Gaussova rovin
opatfena pravouhlymi soufadnicemi, takze jeji body D, VW, H,Z, ...
budeme identifikovat s komplexnimi ¢&isly d, v, w, h, z, ... Mnozinu kom-
plexnich ¢isel budeme znacit pismenem C. Trojihelniky identifikujeme
s trojicemi komplexnich &isel, které nelezi na téze piimce.

Pro porozuméni tomuto ¢lanku jsou potieba zékladni znalosti kom-
plexnich ¢isel: redlna ¢ast Re(z) a imaginarni ¢ast Im(z) komplexniho
Cisla z, absolutni hodnota |z|, komplexné sdruzené ¢islo Z, argument
komplexniho ¢&isla, séitani, odéitani, nasobeni a déleni komplexnich ¢isel.
Je tfeba rozumét tomu, ze nasobeni komplexnim ¢islem odpovidé rotaci
kolem pocatku.

Omezime se na orientované trojice bodu: Trojthelniky ABC (tj. abc)
a UVW (tj. uvw) jsou podobné, jestlize délky jejich stran AB, BC a
C'A (tj. absolutni hodnoty |a —b|,|b — ¢| a |c — a]) jsou, pro jisté kladné
(realné) ¢&islo ¢, t-nasobky délek stran UV, VW a WU (tj. |u—v|, |[v—w]
a |w — u|). Budeme v tomto pfipadé mluvit o ,pFimé* ¢ ,orientované®
podobnosti a znacit ji symbolem ~: abc ~ uvw.

Jadrem diikazu hlavni véty v ¢lanku [2] bylo nasledujici lemma, které
je v tomto ¢lanku nasim vychozim tvrzenim.

Lemma. ijzihelm’ky leQZ?,, tj 212223, Q W1W2W3, tj wi1wa2ws, jsou
pTrimo podobné prdveé tehdy, kdyz
w3 — W1 zZ3 — 21

- 1)

Wz — W1 2’2*21.

Podame dva dikazy tohoto tvrzeni, abychom bliZe osvétlili bezpro-
stfedni vztah mezi elementarni rovinnou geometri{ a strukturou kom-
plexnich é&isel.

DV cizojazyné literatuie ¢ast&ji nazyvana Argandova & Argandova—Gaussova ro-
vina.
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Prvnim diikkazem oslovime ¢tenéfe, ktefi se seznamuji se strukturou
komplexnich ¢isel. Dikaz vyuZiva pojmy translace (posunuti) a rotace
(otoceni) komplexni roviny a je prezentovan ve formé tohoto objasiuji-
ciho tvrzeni: Pro kaZdou uspoiddanou trojici z1 2923 existuje prdvé jedna
trojice tvaru 0lu spliiugict z1 2223 ~ 0lu. Navic, jestliZe je z12223 kladné
om'entovdn potom Im(u) > 0.

Aplikaci t(z) = z — z; dostavame z12923 ~ 02525, kde 2, = 29 — 23
a 2z = 23 — z1. Poté aplikace 7(2) = (25)7'z vede ke 02425 ~ Olu
su = (24) 7124, Tedy 212023 ~ 0lu. Navic, je-li trojihelnik 212523 kladng
orientovan, je kladné orientovan téz 0lu a tedy w lezi v horni poloroviné.
Z téchto vypoctu vyplyva, ze

23— 2

Y= (2)

22 — 21

a ze tedy 0lu je takova trojice jediné.

Druhy dikaz je stru¢na sbirka jednoduchych fakti, které ¢tenari obe-
znameni{ se strukturou komplexnich ¢isel shledaji zcela elementarni a
evidentni. Absolutni hodnota poméru

‘23*21‘7 |23 — 21

zo— 21| |2g — 2]

vyjadiuje pomér délek dvou stran trojuhelniku a argument podilu
ihel o mezi témito dvéma stranami. Tuto situaci jasné vyjadfuje obr. 1.

u
*
\
\
\
\
\

w3 — W1 23 — 21
= =Uu ’
W2 — W1 Z2 — 21 ’

Obr. 1: Trojuhelniky z1 2223, wiwews a 0lu jsou podobné

2) Pripomeiime, Ze trojice bodi z1, 22, z3 je kladné orientovana, pokud se na kruz-
nici opsané témto bodim dostaneme pohybem proti sméru ru¢i¢ek hodin ze z1 nejprve
do z2 a poté do z3.
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Dtikaz je tedy zaloZen na jednoduché myslence vybrat ze souboru
v8ech pfimo podobnych trojihelniki takovy, jehoZ jedna strana ma (zvo-
lenou) délku 1. Takové volby jsou obecné mozné tii, jak ukazuje obr. 2.

Obr. 2: Podobné trojihelniky 01w, 01“7_1 a Olﬁ

Obr. 2 dokazuje bezprostfedné nasledujici tvrzeni.
Véta. MnoZina vsech komplexnich ¢isel z € C spliiujicich Im(z) > 0 (.
¢isel leZicich v Gaussové roviné nad redlnou osou) pFipousti rozklad na
vzajemné disjunktni trojice &isel

1 u—1
Dy, = ) ) . 3
{ulu U } ®)

Tyto trojice jsou v jednoznacné korespondenci s tiidami primo podobnijch
trojuhelniki. Pouze jedna z téchto trojic degeneruje na jedno ¢islo
1 V3

v=g gt

a odpovidd mnoziné orientovangch rovnostrannijch trojuhelnikii.
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Zde si neodpustlme malou poznamku tykajici se imaginarni ¢asti ¢isel
v trojici (3). Jakmile jedno z t&chto &isel ma tuto ¢ast kladnou, maji ji
kladnou (Jak jsme uz zaznamenali) i zbyla dvé &sla. Ctenaid, kteFf maji
v oblibé pocetni argument se mohou presvédcit, ze tvar ¢isla u = r + si,
reR, seR, s> 0, vede k zapisu

1 1—r s

1—u (1—7")2+32+(1—r)2+321’
u—1 r(r—1)+s2 s
— i
u r2 4 g2 r2 4g2"7

atedyIm( )>OaIm(“ 1)>0.

Kazdy ctenar se jisté nyni rad piesvéddéi, ze tFidam rovnoramennych
trojthelnikt odpovida trojice

1t 2 2t t2—1 2t
D:{+i + i } t>0,

s Y Erl T E I Byl 11
a tfidam pravouhlych trojahelniki odpovidaji trojice

. 1 t . 1.
D= {tl, m‘i’ml, 1+tl}, t>0.
Pravouhlé trojuhelniky jsou tedy charakterizovany faktem, Ze pfifazena
trojice Cisel obsahuje ¢islo ryze imaginarni. Specialné,

11
P PR R
{1, +1,2+21}

popisuje pravouhly rovnoramenny trojuhelnik.

Poznamka. Shora uvedenou vétu miizeme snadno modifikovat na pripad
vech (tj. neorientovanych) podobnych trojuhelnikt uzitim komplexné
sdruzenych ¢&isel: Mnozina vsech komplexnich cisel z € C splnugicich

Im(z) # 0 (4. cisel leZicich v Gaussové roviné mimo redlnou osu) pri-
pousti rozklad na vzdjemné disjunktni Sestice cisel

1 1 -1 u—-1
Du:{u,u,l ) ,,u 7u, }

u 1—u U m
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Tyto Sestice jsou v jednoznacné korespondenci s tiidams vSech podobnijch
trojuhelniki. Pouze jedna z téchto Sestic degeneruje na dvojici ¢isel

1 V3.1 V3.
-+ —i, == —i
2 2 2 2
a odpovidd mnoziné vsech rovnostrannych trojihelniki.

Poznamka. ,Normovani“ podobnych trojuhelniki do polohy, kdy je
jedna ze stran identifikovana s intervalem [0, 1] je pouze nasi (vhodnou)
volbou. Volba intervalu [—1, 0] definuje stejnym zpisobem t¥idy

{ 1+u 1 }
u, — , — .
U 1+u

Ponékud jiny rozklad dostavéme volbou intervalu [—3, 3]. Tato volba
vede k rozkladu komplexnich é&isel s kladnou imaginarni ¢asti na t¥idy

34+2u 2u—3
b 2—4du’ du+2|°

{2

V tomto pfipadé je

t¥idou, ktera degenerovala na jedno ¢islo (a odpovidd mnoZziné oriento-
vanych rovnostrannych trojthelniki).

Nezbyva nez uvést shora uvedenou vétu ve zcela obecném tvaru, kdy
zvolenym intervalem je interval [a,b], kde a # b, a € C, b € C.

Obecna véta. Mnozina vSech komplexnich c¢isel z € C lezicich v poloro-
vin€ Gaussovy roviny definované primkou urcenou ¢isly a a b pripousti
rozklad na vzdjemné disjunkind trojice cisel

R N2 N2
Du:{u7a+(ba)’b+(ba)}.
b—u a—u

Tyto trojice jsou v jednoznacné korespondenci s tiidami primo podobnijch
trojuhelniki. Pouze jedna z téchto trojic degeneruje na jedno ¢islo

a(l —+/3i) +b(1++/31)
2

a odpovidd mnoziné orientovangch rovnostrannijch trojuhelnikii.

u =
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Pokud bychom chtéli popsat Sestice komplexnich ¢isel odpovidajici
mnoziné vech (tj. neorientovanych) podobnych trojuhelnikid, vyuzili
bychom nésledujici lemma, jehoZz dikaz ponechame Gtenéfi.

Lemma. Zrcadlovy obraz komplexniho ¢isla u podle primky uréené kom-
plexnimi ¢isly a a b je c¢islo

ot (a —7a)(b - a)-
b—a

Poznamka. V této zavérecné pozndmce poukidzeme na souvislost vyse
popsaného rozkladu komplexnich ¢&isel se skladanim prislusnych kom-
plexnich funkci. Zvolme dvé ruzna komplexni ¢isla ¢ a b a oznatme
pomoci C,; mnozinu vSech komplexnich ¢isel, ktera nelezi na piimce
definované ¢isly a a b. Kromé identické funkece f1, f1(z) = z, definujme
na C,; funkce fo a f3:

_ (b—a)? B (b—a)?
Pl =at = & BlE=be T

Na mnoziné G = {f1, f2, f3} definujeme ,nésobeni x pomoci skla-
dani funkei (fs x f1)(2) = fs(f:(2)). Néasobeni je tedy déno tabulkou

X fi] fa| f3
il fu] fa | fs
| fs]h
sl fs | fi] f2

V terminologii abstraktni algebry je (G, x) cyklickou grupou fadu 3.
Zavér clanku patii dvéma tlohami ¢tenéri.
1. Ukazte, ze volba a = —1 a b = 1 definuje bijekci mezi rozkladem
poloroviny komplexnich é&isel na tfiprvkové t¥idy

3+u —-3+u
u7 )
1—u 14w
a mnozinami orientovanych podobnych trojihelnikti s vyjimkou jed-

noclenné t¥idy popisujici mnozinu vSech orientovanych rovnostrannych
trojihelnikt. Urcete toto komplexni ¢islo.
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2. Dokazte, ze rozklad poloroviny komplexnich ¢isel na trojice ¢isel

{ 1 1—|—ui}
U/, 0
u—1i U

definuje bijekci s mnozinami v8ech orientovanych rovnostrannych troju-
helnikid s vyjimkou degenerované jednoprvkové t¥idy

(42

[1] Dlab, V., Betvak, J.: Od aritmetiky k abstraktni algebfe. 2. vyd., CVUT,
Praha, 2022.

[2] Dlab, V.: Towards understanding of Napoleon’s theorem. Complex num-
bers are the key. Rozhledy matematicko-fyzikdlni, ro¢. 100 (2025), ¢. 2,
s. 33—40.

[3] Dlab, V.: Hlubsi porozuméni vété Napoleonové. https://www.deltad2.com/
Vlastimil’,20Dlab/Hlubsi.porozumeni.pdf

Literatura

Andél na atéku

Jan Jekl, Univerzita obrany, Brno

Abstrakt. V tomto ¢lanku se zabyvame hrou dvou hra¢t na nekonecéné Sa-
chovnici. Jeden z hrac¢i (dabel) odebira pole a snazi se soupefre polapit, zatimco
druhy hra¢ (andél) se pohybuje dle pfedepsanych pravidel a snazi se do neko-
necna unikat. Je znamo, Ze andél dokéze unikat, je-li jeho pfedem stanovena
rychlost dostatecna, a je naopak chycen, kdyz je jeho rychlost prilis mala.

Uvod

Hry a hlavolamy inspirovaly matematiky od nepaméti. Jiz pfed na-
Sim letopo¢tem se Archimedes ptal, kolika zpusoby lze slozit 14 jistych
dilki, aby vytvorily ¢tverec, viz Ostomachion [9]. V roce 1982 tak sepsali
Berlekamp, Conway, a Guy dvousvazkovou knihu popisujici rizné ma-
tematické hry Winning Ways for your Mathematical Plays. V roce 2004
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vyslo druhé vydani knihy rozdélené do ¢tyt svazki ¢itajicich dohromady
1000 stran.

Ve druhém svazku z roku 1982 [1] (ve tfetim svazku druhého vydani)
je zminéna nasledujici iloha. Piedstavme si, Ze mame nekonecnou Sa-
chovnici, po které se pohybuje andél. Andél se pohybuje podobné jako
kral na Sachovnici s jedinym rozdilem, Ze andél muze provést ve svém
tahu az k tahu krale, kde k je pevné zvolené ¢islo, viz obr. Débel
se snazi polapit andéla tak, Ze postupné odstrafiuje ¢tverce ze Sachov-
nice, aby na né andél nemohl znovu vstoupit. Pfitom se dokola stfidaji
v tazich, kdy andél vZdy ucini sviij pohyb a d'abel odstrani jedno pole.
Andél muze ve svém pohybu preskakovat i odstranéna policka, ale ne-
miiZe na nich skonéit. Dabel vyhraje, pokud je andél uvéznén v pasti, ze
které nemiize uniknout. Andél vyhraje, pokud jej dabel nikdy nepolapi,
tj. pokud dokaZze donekone¢na unikat. Pro usnadnéni budeme pouzivat
znaceni andély, kde se jedna o andéla se silou k.

k=2

Obr. 1: Vyznacené pole, kam se miize pfesunout andéls

Otézka, ktera zajimala autory knihy [I], je jednoducha. Polapi d'a-
bel andélay? Dokéaze andély unikat navzdy, aniz by byl polapen? Hraje
volba k néjakou roli? Cast odpovédi{ na tuto otazku poskytli jiz samotni
autofi knihy [I]. ProtoZe v8ak ani po patnécti letech otazku nikdo uspo-
kojivé nezodpovédél, vypsal J. H. Conway finan¢ni odménu za nalezeni
odpovédi na zbyvajici otazky [3]. V zavislosti na ziskané odpovédi a po
prepocteni nabizené Céstky na dneSni penize by si tak tspéSny TeSitel
mohl pripsat na Gcet az 40 tisic korun.

Kompletni odpovéd na uvedené otazky byla ziskana az v roce 2007.
Dnes tedy jiz vime, Ze je-li k = 1, pak dabel dokaze polapit andéla.
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Je-li k alespoii 2, pak andél dokaze unikat donekoneéna. V tomto ¢lanku
popiSeme feseni pro k = 1 a pro k > 11, kde vychézime primérné z ¢lanku
[3], [8] & knihy [I]. V piipadé nejasnosti doporucujeme ¢tenafi tyto texty
také prozkoumat. Zminhme také, ze neni znamo, zda byla finan¢ni odména
nakonec vyplacena [12].

HEEEEEN

Sem se andél nedostane

Obr. 2: Andél; na tahu. Nachazi-li se pfed andélem; t¥i odebrana pole (Cervenéa
barva), pak se jiz andél; nikdy za tuto hranici nedostane

Zminme nakonec, Ze neni zcela jasné, kdo samotnou hru vymyslel.
Silverman je dle ¢lanku [4] vynélezcem her, kde se na Sachovnici pohybuje
Sachova figura a protivnik odebira pole. V knize [I] pFipisuji autorstvi
zde popsané verze hry panu Epsteinovi [I1]. Nicméné pan Silverman zde
uvedenou hru i s jejimi obecnymi pravidly uvadi také ve své knize [10]
z roku 1971, tj. jedenact let pred vydanim knihy [I].

Polapeni andéla pro k =1

Prvni ze vSeho uciiime nékolik pozorovani. Pokud bude dabel odebirat
pole vzdy v blizkosti andéla;, pak dokaze andé&l; unikat. Proto aby byl
andél; chycen, tak musi dabel nachystat ,,past®, do které se andél; chyti.

Rozmysleme si také, Zze tfi odebrana pole piimo pfed andé&lem; tvoii
pro andéla; nepfekonatelnou hranici, viz obr. 2| Posune-li se andél; do-
prava, pak dabel odstrani dalsi pole v fadé napravo. Naopak posune-li
se andél; doleva, pak dabel odstrani dalsi pole v fadé nalevo.

Vitézné strategie vedouci k uvéznéni andéla spocivéa v tom, ze lze tako-
vouto bariéru blizicimu se andélovi pfedem nachystat. Pfedpokladejme,
ze andél se pohybuje jednim smérem a d'abel ho chce zastavit. Déblovi
sta¢i odebrat pole v paté fads p¥imo pied andélem, viz obr. [3|a), a volit
spravné nasledujici kroky. Andél se nyni miize posunout dopredu [3| b)
nebo do strany 3| ¢). Vzhledem k symetrii situace sta¢i studovat pouze
posun do jedné ze stran a posun do druhé strany dopadne analogicky.

Rozebereme nejprve variantu 3| b), kdy se andél; posune dopfedu na
pole B, obr. Dabél reaguje odebranim pole na jedné strané B’. Vyda-li
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se and&l; ve sméru odebraného pole B’, pak dabel reaguje postupnym
odebiranim poli ve stejném sméru, obr. [4{a). Pokud by se andél; posunul
7 pole B znovu dopfedu na pole C, obr b), pak sta¢i odebrat pole C’
na druhé strand a andél; je jiz v pasti. Andél; se tedy musi posunout
v opa¢ném sméru od odebraného pole B’, obr. c) a nyni dabel pfeskoci
jedno pole a odebere C’. Nyni je jiz andél; také v pasti.

]

a) b)

H _EEEN N

o

B B
A A A

Obr. 3: a) Andél; se piiblizil k pomyslné hranici, kterou chee dabel vybudovat,
a dabel odebere ¢tverec pét poli pred andélem;, aby jej zastavil. Andél; je na
tahu a muze se posunout vpfed b), nebo do strany c)

E E2| |[E1
D D D1|D2, D
C C C C Cc
B B B B B
A A A A A

Obr. 4: Tahy andéla; jsou vyznaceny tiskacimi pismeny. Odpovédi d'abla jsou
doplnény o apostrof. Jedna se o rozbor moznych taht, kdy andél tdhne prvnim
tahem vpfed, viz 3| b).

Posune-li se andél; z pole C doleva nebo dopiedu, dabel odebere vy-
nechané pole D’, obrazek |4|d). Posune-li se andél z pole C dale doprava,
obr. [4] e), pak pokrac¢ujeme odebiranim poli napravo od C’, kde vyne-
chané pole E2’ odebirdme, jenom kdyby se andél pokusil proklouznout
tahem doleva E2. Peclivym rozebranim situace vidime, ze andél; je jiz
v pasti.

Nyni se podivejme na druhou variantu [3| ¢), kde se andél; posune
do strany na pole B. Na tento tah je potieba reagovat vynechanim jed-
noho pole a odebranim dalsiho pole ve sméru andé&lova; pohybu, obr.[5(a).
Pokud se nyni posune andél; z pole B doptfedu na pole C2, pak odebi-
rame vynechané misto, obr. |5 b), a podobné postupujeme, pokud se
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andél; z pole B posune doleva na C1. Pokud se andél; posune z pole
B dale doprava na pole C, obr. [5| ¢), pak odebirame pole napravo C’.
Vynechané misto D1’ odebirame, jenom kdyby se andél; pokusil pro-
klouznout tahem vpfed na D2 nebo doleva na D1. V pfipadé, Ze andél
pokracuje pohybem na D3, odebirame dalsi pole D3’ v fadé. Ve vSech
téchto piipadech je andél; jiz prakticky zablokovan a nemiize prekrocit
d’ablem vytydenou hranici.

Uvedenymi kroky miZe dabel uvéznit andéla; v jedné poloroving.
Je ale jasné, Ze v tomto piipadé neni andél chycen, protoze stale muze
nekoneéné unikat do strany. Past na andéla; vSak kompletné sklapne,
bude-li andél; uvéznén v ohrani¢ené oblasti. Aby bylo moZné andéla,
uvéznit, je potieba si ,,oblast” pfedem nachystat. Débel nejprve odebira
rohova pole ve tvaru pismene L, v dostatecné velkém ¢&tverci tak, jak je
vyznaceno na obr. [} V rozich odebrané pole zajisti, Ze andél nebude
moci do nekoneéné unikat podél piimky.

a) b) c)
D1|D2D3
c1fcz2 C
B B B
A A A

Obr. 5: Tahy andéla; jsou vyznaceny tiskacimi pismeny. Odpovédi dabla jsou
doplnény o apostrof. Jedna se o rozbor moznych tahii, kdy andél tdhne prvnim
tahem do strany, viz [3| c)

Chystany ¢tverec musi byt dostateéné velky, aby z néj andél neunikl
nez budou rohova pole odebrana. K odebrani roht staéi dablovi pouze 36
tahid (9 taht na vytvorfeni hranice ve tvaru L v kazdém rohu), tj. ¢tverec
by mél byt dostatecné velky, aby se z néj andél; za 36 tahui nedostal
(a nechceme ani, aby se v této dobé dostal do vznikajicich past). Tedy
pocatecni ¢tverec musi mit stranu délky alesponi 83 poli, tj. 36 v kazdém
sméru od andéla. Na stranach ¢tverce tak vzniknou pasy, do kterych
kdyZ andgl; vstoupi, tak dabel za¢ne vyplhovat ¢arkovanou hranici dle
vySe uvedeného postupu, aby andél; z oblasti neunikl.

Predem odebrané rohy zajisti, Ze andél; nebude moci unikat do strany
vé¢éné, ale diive nebo pozdéji narazi na odebrané pole. Prekroé¢i-li andély
z jednoho pasu do druhého, za¢ne dabel odebirat pole z ¢arkované hra-
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nice nového pasu. Diky pfedem odebranym rohovym polim jsou na sobé&
pasy nezavislé a nemiZe se tak stat, ze by dabel musel vypliiovat dvé
use¢ky najednou.

Pole Cekajici na odebrani.

Vstoupi-li andél do

hranicniho pésu, Pfedem
zacne débel s odebrana pole v
odebiranim rozich.

carkované hranice.

Ajedno
pole v rohu

\ 4 pole

Obr. 6: Predchystana oblast, kde dojde k uvéznéni andéla;, musi byt dosta-
te¢né velka, aby dabel dokazal odebrat vzdy 9 poli v kazdém rohu ve tvaru
pismene L, viz Gerna ¢ara reprezentujici odebrané pole. Po tuto dobu se andél;
nesmi dostat do vznikajicich past. Jakmile andél; vstoupi do péasi, zacne da-
bel odebirat pole na ¢arkované ¢afe, aby jej zastavil

Vyhoda strategie spociva také v tom, Ze pokud by dabel udélal chybu,
pak lze zacit znovu od zadatku s novou oblasti. Uvedme nakonec, ze zde
uvedené strategie vychéazi z textu [6]. Elwyn R. Berlekamp je dle [4]
autorem slozit&jsi strategie, kterou lze nalézt v knize [I]. Zde je ukazano,
ze k uvéznéni andéla stacéi ¢tverec o strané délky 33 policek.

Unik andé&la neni jednoduchy ani pro k > 2

V predchozi ¢asti jsme vidéli, ze andéla; lze polapit. Jak jsme jiz
uvedli, dnes jiz vime, Ze pro k > 2 dokaze andély unikat navzdy. Pritom
musi byt opatrny a volit spravnou strategii, nebot pokud by se pohy-
boval prili§ jednoduse, bude uvéznén, jak ukazal Conway [3]. Abychom
ukazali, Ze tomu tak skutecné je, uvazujme andélay, ktery se pohybuje
v kazdém tahu alesponi o jedno pole doprava a nikdy se nevraci doleva,
viz obr. [7] Predpokladejme také, ze je andély uvéznén, pokud se jiz nema
kam pfesunout. V nésledujici ¢asti uvazujme pro prehlednost andéla,.
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ProtoZe se andély pohybuje pouze jednim smérem, pak dabel vi, kde
je potieba nachystat past. Predpokladejme, Ze se pokusime vybudovat
nepropustnou bariéru ve vzdalenosti h = 2260 s 1,8-1078 poli napravo od
andélas. Protoze se andély musi kazdym tahem posunout doprava, staci
k zastaveni andélay dostatedné Sirokd bariéra (o Sifce 4), aby ji andély
nemohl pfesko¢it. Andély dorazi do vzdalenosti h nejdiive za % = 2258
tahil, pokud se bude posunovat v kazdém kroku o 4 pole doprava, tj.
co nejrychleji doprava. A naopak nejpozdéji za h = 229 tahi, pokud
se bude pohybovat doprava vzdy pouze o jedno pole, tj. co nejpomaleji
doprava.

k=4

Obr. 7: Pohyb andélas sméfujiciho vzdy alesponi o jedno pole doprava

Nevime, jaky postup andély zvoli, a proto je potifeba se dopiedu
pfipravit na vSechny varianty. ProtoZe se andély miiZze posunovat ve
sméru nahoru nebo doli maximalné h-krat a v kazdém tahu se po-
sune o maximalné 4 pole, pak chystand bariéra musi mit délku alespon
2hk = 8h = 2263 poli. Zde se zohlednilo, Ze andé&ly miiZze smé&Fovat nahoru
i doli. Protoze dokonalou neprostupnou bariéru ve vzdalenosti h nelze
pripravit (dabel odebira pole mnohem pomaleji, nez se andél pohybuje),
tak si popiSeme, jak lze sestrojit alesponn bariéru postacujici k uvéznéni
andéla,. Predpokladejme nejprve, Zze budujeme bariéru o Sitce 1. Pozdéji
uvidime, Ze stejny postup lze aplikovat 4-krat, aby byla bariéra dosta-
tecné Siroka.

Rozmysleme si, Ze ¢im vice se andély blizi k hranici, tim pfesnéji vime,
kam sméfuje, a k jeho zastaveni sta¢i kratsi bariéra, viz obr. [§] Jakmile
andél, urazi polovinu vzdalenosti h = 220, tj. vzdalenost 22°9, tak nové
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staci postavit bariéru zhruba poloviéni délky, viz obr. [§] Vzdyt pavodni
délka bariéry 2263 = 8h bude nové také poloviéni 8% = 4h = 2262,

A

Obr. 8: Po n&kolika tazich 1ze zmensit chystanou bariéru, nebot zname andélav
cil pfesnéji

28

Ozna¢me pro nasledujici kroky hodnotu M = 2% a uvazujme, Ze
e Andél, urazi polovinu vzdalenosti h, tj. vzdalenost 229, za 2257

taht, pokud bude spéchat co nejvice doprava, a za 22°9 taht, bude-
li se posouvat co nejméné doprava. Za tuto dobu dokdze débel
uréité odebrat jedno pole z kazdych M = 26 poli bariéry o piivodni
délce 2293, Vskutku, k tomu mu stadi pouze N

_ 9257
M 5o = 27
tahu.

Nové andéloviy zbyva urazit jiz jenom druhou polovinu vzdélenosti
h, tj. vzdalenost 22°% a dablovi naopak stadi se nové soustiedit
pouze na bariéru délky 2262, nebot jiz presné&ji vi, kam andél, smé-
fuje. Polovinu zbyvajici vzdalenosti 2259, tj. vzdalenost 22°® andél,
urazi za 22°% tahii, pokud bude sp&chat co nejvice doprava, a za
2258 tahii, bude-li se posouvat co nejméné doprava. Za tuto dobu
dokaze dabel z kazdych M = 28 poli zbyvajici ¢asti bariéry jedno
pole odebrat. Vskutku, k tomu mu sta¢i pouze 2;;8 = 2;—;8 = 2256
tahi.

Po dvou krocich jiz andéloviy zbyva urazit pouze vzdalenost 22°% a
d'ablovi se staci soustiedit na bariéru délky 2261, I ve tfetim kroku
by se dablovi podarilo odebrat vzdy jedno z M poli zbyvajici éasti
bariéry.

Dabel postupuje stejnym zptisobem poiadd dokola. Zatimco andély
urazi polovinu zbyvajici vzdalenosti, tak méa d'abel dostatek ¢asu
odebrat vzdy 1 z M poli ve tvorici se bariéfe. Diilezité je, ze poca-
tecni vzdélenost je dostatecné velka, aby bylo mozné ji opakované
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pulit. Dale je dulezité, Ze se délka bariéry zmensuje stejné rychle
jako délka vzdalenosti.

e Po M opakovanich tohoto postupu jiz bude stat ve vzdalenosti

260 260 263
2226 = 2254 = 2196 pied andélemy tsecka o Sifce 1 a délce 2226 =

= 22266; = 2199 Po 4M = 28 opakovanich jiz bude mit bariéra pred

andélem pozadovanou §itku 4.

e Uspéch dabla spo¢iva v tom, Ze si mize volit dostateéné velkou
pocateéni vzdalenost h = 2250, Aby postup fungoval pro k = 4 a
M = 26, pak musi byt h = 2%, kde o > 256.

Lze si rozmyslet, ze pro obecné k staci volit M = 4k? a o > 4k>. Diikaz
tohoto tvrzeni pienechavime ¢Etenafi za tkol. Rozmysleme si také, ze
bariéra by méla byt o néco vétsi nez 2hk, aby ji andél v poslednim tahu
nedokazal obejit. Odebréani krajnich poli lze vSak zajistit zvétSenim M
a h.

Poznamenejme nakonec, ze Conway [3| nazyva andélay sméfujiciho
v jednom sméru hlupékem.

Andél unikne, je-li &k > 11

Dnes jiz vime, Ze andély dokadze unikat, je-li & > 2. Dvé nezavisla
feSeni této tlohy byla publikovdna v roce 2007, a to v ¢lancich [§] a
[5]. Pfitom autofi o svych vysledcich patrné védéli, nebot se vzajemnd
ve svych ¢lancich zminuji. V tomto textu se zaméfime na jednodussi
dikaz, ktery A. Mathé také uvadi ve svém ¢lanku [8]. V tomto dikazu je
ukazano, ze andél, dokaze unikat pro k > 11. Pro k > 2 je dtikaz o néco
slozité&jsi a ponechame jej tedy ¢tenaii k samostudiu.

Predpokladejme, ze je kazda buiika hraciho pole oznacena soufadni-
cemi [z,y], kde x,y € Z. Dale predpokladejme, Ze débel jiz pfed prvnim
tahem odebral vSechna pole, jejichZz x-ovéa soufadnice je zaporna. Tento
krok andélovi tnik pouze ztizi, a tedy nemé vliv na obecnost dtikazu. Na-
misto andéla v8ak A. Mathé studuje takzvaného béZce. BéZzec sméfuje

tésné podél odebranych poli tak, ze:

e ma vzdy odebrana pole nalevo vzhledem ke sméru svého pohybu,

e muze urazit libovolny pocet poli, aby se dostal tam, kam by se
dostal i andél,

e v kazdém tahu (dokud neni uvéznén) se piesunuje co nejdale to
Ize.
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Pro potteby ditkazu je navic uvazovano, ze bézec pii pohybu jakoby obar-
vuje stény nalevo, okolo kterych projde. Jak uvidime pozdéji, dikaz také
vyzaduje, aby béZec v jednom tahu obarvil maximalné 2k stén, tj. muze
se zastavit dfive, nez by se zastavil andél kvili nemoznosti obarvit dalsi
sténu. Obarvené stény nésledné poslouzi k pfibliznému urceni bézcovy
pozice. Vice viz nasledujici dikaz. Pohyb béZce je naznaden na obr. 9]

S
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Obr. 9: Trasa béZce (8eda) tésné podél odebranych poli (€ervena) smérem
vzhiru. Tuéné ¢ary znadi jiz obarvené stény podél béZcova pohybu

Obarvovani stén hraje v nasledujicim dukazu kli¢ovou roli, nebot po-
loha bézce je odhadovana pravé podle poctu obarvenych stén. Pozname-
nejme také, Ze béZec je slabsi verzi andéla, tj. pokud by d'abel dokazal
uvéznit andéla, pak dokaze uvéznit i béZce. Naopak pokud d'abel nedo-
kaze uvéznit béZce, pak nedokize uvéznit ani silngjsiho andéla.

Mathé také uvazuje hodného d'abla, ktery neodebira pole, na néz bézec
dfive vstoupil. Dulezité je, viz [§], Ze pokud hodny dabel nepolapi andéla,
pak jej nepolapi ani dabel. Z chovani hodného d'abla navic vyplyva, ze
pokud béZec obarvi nékterou sténu podruhé, pak se dostal zpatky na svij
zaCatek a jiz je polapen, nebot obiha v kruhu. Podle toho 1ze také poznat,
kdy je bézec uvéznén. Dokud béZec neobarvi né€kterou sténu podruhé,
pak muze vzdy jeSté unikat.

Piedpokladejme nyni, Ze béZzec zacina v buiice [0, 0] a sméfuje vzhiiru
podél pomyslné osy y. Je jasné, Ze v prvnich nékolika tazich (feknéme
prvnich 10) béZec nemiize byt uvéznén. Vzdyt v jednom tahu dokéze
bézec ob&hnout vice poli, nez kolik jich dabel stihl za prvnich 10 taha
odebrat.
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Indukci nyni pfedpokladejme, Ze béZec nebyl v prvnich ¢ tazich chycen.
Bézec v kazdém tahu urazi alespoii k poli (pokud miize sméfovat piimo
vzhiiru & poli dopfedu), a v ¢ase t je jiZ obarveno alespon kt stén. Kolik
z téchto stén se nachézi na ose y? BéZec sméfuje vzhiru podél osy y
pouze s vyjimkou pfipadi, kdy obih& odebrana pole (ta maji maximélné
4t stén) a kdy mu dabel vynuti smér doli, viz obr. |§| (tehdy se bézec
posune maximélné o ¢ poli doli, nebot vice poli neni dosud odebrano).
Na ose y je tedy obarveno alespon kt — 4t — t poli, tj. bézec se nachazi
t(k—5) poli nad osou x. ProtoZe v8ak plati, ze t > 10 a k > 11, pak méame
t(11 — 5) > 10(11 — 5) > 60. To znamena, ze se bé&zec nachazi alespoii
60 poli nad osou z, a protoze bézec nemiize v jednom tahu obarvit vice
nez 2k = 22 stén, proto se v (¢t + 1)-nim tahu nemize vratit na pivodni
pole [0,0]. Bé&Zec by byl uvéznén, jenom pokud by se vratil na pivodni
pole [0,0]. Tam se ale v (¢t + 1)-nim tahu nevréatil, a tedy v (¢ + 1)-nim
tahu neni uvéznén. Provedli jsme diukaz indukci, Ze bézce nelze polapit.

Nyni jsme dokazali, ze hodny dabel nedokaze polapit bézce. Jak jiz
bylo naznaceno diive, béZec neumi unikat tak dobfe jako andél. Proto
pokud hodny d'abel nepolapi bé&Zce, pak nepolapi ani andé&la. DuleZitou
¢asti dikazu je takeé to, viz [§], Ze pokud andéla nepolapi hodny dabel,
pak jej nepolapi ani dabel.

Zminime nakonec, Ze t(k — 5) je konzervativni odhad polohy andéla.
Tim je mysleno, Ze po zevrubné analyze bychom jisté zjistili, Ze bychom
dokazali najit presnéjsi odhad bézcovy vzdalenosti od osy x. Tj. patrné
se nachézi ve vétsi vzdalenosti od osy x. Pro potieby naseho dukazu
v8ak tento odhad postac¢uje. Zde uvedeny dikaz funguje pro k > 11, ale
fungoval by jisté i pro k > 7. Pro k < 7 je potfeba postupovat opatrné&ji
a pocitat peclivéji. Nejpeclivéjsi vypocty jsou potieba pro k = 2, vice
viz [8].

Zavér

Poznamenejme, Ze hra byla studovéna také ve tiech rozmeérech, viz [6],
[2]. Je tak jiz zndmo, Ze andé&ly3 dokaze d'ablovi ve t¥ech dimenzich unik-
nout, viz [6]. Nicméné pokud je ndm znamo, tak hra ve tfech dimenzich
dosud nebyla zcela roziesSena. Neni tak jisté, zda dokaze napiiklad unikat
i andél;. V minulosti se andé&lskému problému vénovala jen maléd sku-
pina matematiki. Je to patrné také tim, Ze feSeni Glohy nepfinasi zadné
aplikovatelné poznatky a neni jasné, jak na tlohu aplikovat standardni
matematické nastroje, se kterymi jsou matematici zvykli pracovat.

Na zavér tedy prenechame Ctenaii otdzku. Zamyslete se, zda by bylo
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nékteré z uvedenych diikkazii mozné aplikovat i tehdy, kdyby se andél
pohyboval jako jezdec na $achovnici (viz také [4]). Dopadl by vysledek
jinak, kdyby mohl dabel odebirat ve svém tahu dvé a vice poli?

Podé&kovani

Tento piispévek vznikl s podporou projektu DZRO Vojenské auto-

nomn{ a robotické systémy.
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Ochranovska hvézda:
Svétlo nadéje s geometrii v srdci

Tereza Bdrtlovd, MFF UK, Praha

Ochranovskd hvézda, znaméa také jako herrnhutskd hvézda, je nejen
symbolem adventniho Casu, ale také fascinujici ukazkou spojeni mate-
matiky, geometrie a tradice. Jeji pfibéh zacind v roce 1821 v saském
Herrnhutu (Gesky Ochranov), kde se pivodné zrodila jako netradiéni
ucebni pomiicka.

Od matematického cviéeni k vanoéni ozdobé

V malém skolnim prostiedi Herrnhutu, saského mésta zalozeného mo-
ravskymi exulanty, byla hvézda diky svym slozitym tvartm puavodné
uréena k procvi¢ovani prostorové geometrie. Pivodni podoba byla im-
pozantni — slozena z 110 jehlant, z nichz nékteré mély trojuhelnikovou
a jiné ¢tvercovou zékladnu. Tato ,,jezata” hvézda brzy zaujala studenty
natolik, ze si zacali vyrabét vlastni verze pro zdobeni pokoji.

Obr. 1: Ochranovska hvézda (fotografie autorky)

) Clanek byl se svolenim autorky prevzat z webu MFF UK www.matfyz.cz.
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Postupem ¢asu se z praktické pomitcky stala ozdoba, ktera zafila ve
skolach i domacnostech. Pfidanim svicky nebo jiného svételného zdroje
ziskala hvézda novy, slavnostni rozmér. Tim zacala jeji cesta k tomu, aby
se stala neodmyslitelnym symbolem adventu.

Symetrie a zafFe archimédovského mnohosténu

Moderni verze Ochranovské hvézdy ma 26 paprskia. Z hlediska ge-
ometrie jde o archimédovské téleso, konkrétné s mnohosténem zvanym
rombokubooktaedr. Archimédovska télesa, ktera vdeéci za sviij nézev fec-
kému mysliteli Archimédovi ze Syrakus, jsou zvlastni skupinou geomet-
rickych tvart nachézejici se na pomezi pravidelnych platonskych téles a
nepravidelnych mnohosténti.

Platonskd télesa, pojmenovana po filozofovi Platonovi, jsou pravidelné
mnohostény s naprosto symetrickymi sténami tvofenymi shodnymi pra-
videlnymi mnohotuihelniky. Existuje pouze pét platonskych téles: tetraedr
(¢tyfstén), hexaedr (krychle), oktaedr (osmistén), dodekaedr (dvanacti-
stén) a ikosaedr (dvacetistén).

Archimédovskd télesa jsou oproti nim polopravidelné mnohostény, je-
jichz stény tvofi pravidelné mnohotihelniky dvou nebo tii typt. Zaroven
zustavaji symetricka, protoze v kazdém vrcholu se setkava stejny pocet
stén téhoz typu ve stejném potadi. Téchto téles je 13 a jsou vysledkem
,ofezavani platonskych téles.

Naprtiklad z krychle lze vytvorit rombokubooktaedr, ktery tvoii zéklad
ochranovské hvézdy, odiiznutim hrany krychle rovinami rovnobéznymi
s jejimi hranami, a to tak, aby z ptuvodnich ¢tvercovych stén vznikly
mensi ¢tvercové stény, misto kazdé hrany vznikl opét ¢tverec a misto
ptvodnich vrcholt vznikly pravidelné trojuhelniky.

AT
v

Obr. 2: Rombokubooktaedr (zdroj obrazku: https://dml.cz/bitstream/
handle/10338.dmlcz/402379/DejinyMat_54-2012-1_9.pdf)
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Rombokubooktaedr méa 26 stén: 18 ¢tvercovych a 8 trojihelnikovych.
Na néj jsou v pripadé hvézdy pfipevnény jehlany — 18 &tyirbokych a
8 trojbokych, coz ji dodava typicky ,,jezaty“ vzhled. Dokonala symetrie
téchto téles fascinovala jiz starovéké matematiky a dodnes inspirativné
kombinuje védu s estetikou.

Novodobé provedeni hvézd

V pribéhu let se vyroba ochranovské hvézdy vyrazné zjednodusila.
Dnesni verze se jiz obejdou bez komplikovaného vnitiniho télesa, na které
by byly pripevnény jednotlivé paprsky. Konstrukce hvézdy je nyni tvo-
fena lehkou, ¢asto skladaci konstrukei, kterd drzi jednotlivé paprsky na
misté, pripadné se vnitini konstrukce zcela vynechava a vyroba hvézdy
spoc¢ivéa pouze v lepeni jehlanii k sobé. Tyto tipravy nejen usnadiuji vy-
robu, ale také snizuji hmotnost hvézdy, coz je praktické pii zavésovani a
manipulaci.

Pokud byste si chtéli ochranovskou hvézdu sami vyrobit, ale mate
pocit, ze hvézda s 26 vrcholy je pro vas prili§ slozita, muzete zkusit
jednodussi, ale velmi hezkou variantu podle naseho navodu.

Obr. 3: Jednoduché ochranovska hvézda

Navod na vyrobu jednoduché ochranovské hvézdy: Ptipravte si Sest
jehland (miZzete vyuZzit nasi 8ablonu na obr. , které k sobé slepite tak,
jako kdybyste je lepili na stény krychle. Vznikne vam jednodussi verze
ochranovské hvézdy se Sesti vrcholy.

Svétlo nadéje a tradice

Ochranovska hvézda se rozsifila z Herrnhutu do celého svéta. Dnes je
neodmyslitelnou sou¢ésti vanoc¢ni vyzdoby, zejména v Némecku, Cesku a
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dalsich zemich se sasko-ochranovskou tradici. Jeji zafivy vzhled a doko-
naléd symetrie pripominaji betlémskou hvézdu, ktera symbolizuje nadéji,
lasku a mir.

Obr. 4: Plast jehlanu

Obr. 5: Ochranovska hvézda se Sesti hroty (fotografie autorky)

Pokud v adventnim Case projizdite setmélymi vesni¢kami Saska nebo
jinych regionii, nemiizete ochranovskou hvézdu prehlédnout. Zari na do-
mech, kostelich i ulicich, pfinasi radost a pfipomina bohatou historii,
ktera spojuje védu, viru a kulturu.
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Krabice na darek

Nasledujici vano¢ni dloha je od prof. Jifiho Bouchaly, stejné jako ob-
razek Hlavo-lam, ktery ji doprovazi.

Uloha

Predstavte si, Ze mdte velmi kvalitni pisek a na pudé karton ve tvaru
Ctverce o stran€ délky 1 metr. Svému nejlepsimu kamarddovi chcete ddt
k Vanocim swij kvalitni pisek. A protoZe je to nejlepsi kamardd, chcete
karton posklddat tak, aby vznikla krabice (bez vika) co nejvétsiho objemu.
Ohgbdte karton tak, Ze uprostied zistane ¢tverec o stran€ délky a, pricemz
boky budou mit vysku b, viz obrdzek [1 Jaké budou délky a, b tak, aby
objem krabice byl co nejuétsi?

v

1m

Obr. 1: Ohybani kartonu
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Uloha z minulého &sla znéla:
Ukazte, Ze mezi libovolngmi 39 po sobé jdoucimi pTirozenymi ¢isly je
alespoti jedno, jehoz soucet ¢islic je deélitelny 11.

A pak néasledovala jesté iloha v obecnéjsi podobé:

Jaké je minimdlni ¢islo M,, pro které mezi kaZdymi M, po sobé jdou-
cimi prirozenymi ¢isly existuje alespon jedno éislo, jehoZ soucet cislic
v zdpisu o zdkladu z je délitelny z + 17

Reéepl' téchto tloh je popsano v tomto ¢isle v ¢lanku Hrdtky s délitel-
nosti: ReSeni — Solution od Vlastimila Dlaba a Erzsébet Lukacs.

Obr. 2: Jifi Bouchala: Hlavo-lam
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Hratky s délitelnosti. Regeni — Solution

Vlastimil Dlab, Praha — Erzsébet Lukdcs, Budapest

V tomto ¢lanku vyfesime tlohy z minulych Matematickych ofiski.
Uloha 1

Ukazte, Ze mezi libovolngmi 39 po sobé jdoucimi prirozenymi ¢isly je
alespoti jedno, jehoZ soucet cislic je délitelny 11.

A v obecnéjsi podobé.
Uloha 2

Jaké je minimdlni ¢islo M, pro které mezi kaZdymi M, po sobé jdou-
cimi prirozengmi ¢isly existuje alespori jedno ¢islo, jehoZ soucet cislic
v zdpisu o zdkladu z je délitelngj z + 17

V prvni ¢asti ¢lanku rozfesime dlohu 1 pro dekadicky zapis &isel, tj.
pro z = 10. Ta je napsana ¢esky. Druha ¢ast, fesici tlohu obecné pro zapis
¢isel v soustavé o libovolném zakladu z, je prezentoviana v angli¢ting.

Pouzité znaceni
Kazdé prirozené ¢islo a 1ze jednoznacéné zapsat v ¢iselné soustavé o zd-
kladu z € N, z > 2,
a=as2"+as_ 12"+ +asz® + a1z + ao, (1)
kde as # 0,a9,a1,...,as € {0,1,...,2 — 1}. Tento zapis budeme znadit
struc¢néji
a = (as,Gs—1...a2a100),. (2)

Dale definujme soudet ¢islic

o.(a) = Zat- 3)
t=0

Pomoci funkce o, je mozno formulovat tlohu 2 nasledovné:
Uloha 2

Pro dany zdklad z najdéte neymensi ¢islo M, spliiujici podminku, Ze
kazdd posloupnost M, po sobé jdoucich prirozenych c¢isel obsahuje ¢islo x
takové, Ze o,(x) je délitelné cislem z + 1.

Cislo M, budeme déle v textu znadit Min(z).
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Reseni tlohy 1
V této prvni ¢asti budeme ¢isly rozumét prirozena ¢isla spolu s nulou,
zapsané v desitkové Ciselné soustavé. Kazdému pfirozenému ¢islu

a = (a5a571 N a2a1a0)10

je tedy prifazen soucet &islic o(a) = > 7 as.

Konecnou posloupnost po sobé jdoucich (celych) ¢isel nazveme seg-
ment. Segment délky d zacinajici ¢islem a budeme znacit symbolem
oS (d):

oS(d)=(a,a+1,a+2,...;a+d—1).

Tedy
0S(10) =(0,1,2,3,4,5,6,7,8,9),
prol <k <9jeoSk)=1(0,1,2,....,.k—1) a
10-kS(k) = (10 -k, 10 — k+ 1,10 — k +2,...,9).

Kazda posloupnost poslednich cislic ¢isel segmentu ,S(39) zapsanych
v desitkové soustavé ma tedy jeden z téchto tvara:

05(10) 05(10) 05(10) 05(9),
18(9) 05(10) 05(10) 05(10),

95(1) 05(10) 05(10) 05(10) 0S(8).-

Proto kazda z téchto posloupnosti obsahuje posloupnost
0S8(10) 0S(10) ¢S(10) = (0,1,2,...,8,9,0,1,2,...,8,9,0,1,2,...,8,9).
To jsou posledni ¢&islice segmentu, ktery oznacéime
mSB0) = (m,m+1,m+2,...,m+29).

Nyni uvazujme piislusnou posloupnost ¢islic
(K1, Koy ks, .. ko, ko, k11, kia, k1s, - - -, k1o, k2o, K21, ka2, kas, - .+, k2o, K30),
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které jsou v tomto zapisu ¢isel prislusného segmentu ,,S(30) na predpo-
slednim misté. Je-li k1 = k # 9, je prislusna posloupnost para poslednich
¢islic

(k0,k1,k2,k3,... k9 k+10,k+11,k+12,....k+19,... ko8, kso9).

Mimochodem, zde kog = k3o = 0 nebo k + 2 v zavislosti na tom, zda
k = 8, nebo k # 8. Omezme se na prvnich 20 ¢isel tohoto segmentu a
ozna¢me o(m) = N. Potom posloupnost

(o(m),c(m+1),...,0(m+9),0(m+10),0(m + 11),...,0(m + 19)) =
=(N,N+1,....N+9 N+1,N+2,...,N +10),

a proto mezi témito ¢isly musi byt ¢islo délitelné 11.

Jestlize k1 = k = 9, pak k11 # 9 a predesly postup aplikujeme na po-
sloupnost (ki1, k12, ..., k30). Tim je dokézano, Ze v dekadickém pripadé
kazdy segment délky 39 obsahuje ¢islo, jehoz soucet éislic, tj. c—hodnota
je nasobek 11.

Dodejme jesté, ze kromé segmentu
999981S(38) = (999981, ...... ,1000018)

zminéného v zadani tlohy, kdy o—hodnota zadného z jeho prvku neni
nasobkem 11, je takovych segmentt délky 38 nekone¢né mnoho. Ctenar
se muze presvédcit, ze pro kazdé t =0,1,2,...,

0999515 (38) = (99---9981,.. .. .. ,100- - - 0018),

kde pocet devitek (a piislusnych nul) je 11t +4, méa tuto vlastnost. Tedy
Min(10) = 39.

Solution of Problem 2

The solution presented in the first part is a special case of the general
situation where the numbers are expressed in base-z numeral system.
Let us express in English the general problem that we want to solve.

Problem 2

For a given base z find the minimum number M, satisfying the con-
dition that every sequence of M, consecutive non-negative integers con-
tains a number x such that o,(x) of the digits of x in the base-z system
18 divisible by the number z + 1.
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In the following, we denote M, by Min(z).

Following the first part of the article, denote by ,S(d) the sequence of
d consecutive numbers starting with the number a and call it a segment.
Let us call the segment ,S(2) a basic z-sequence if the starting number
a is divisible by z. Thus in the base-z form (1) of the numbers of this
segment only last digits change, running from 0 to z — 1. The o,-values
(3) of these numbers are also consecutive numbers.

We begin the solution of the problem with a few preliminary observa-
tions.

Observation 1. A basic z-sequence contains a number whose o, -value
18 divisible by z + 1, unless it starts with a number whose o,-value has a
remainder 1 when divided by z + 1.

Let ,S(z) be a basic z-sequence and let 0, (a) = k. Then the o,-values
of the numbers in ,5(z) form a sequence S(z) = (k,k+1,..., k+2z—1).
Among the z + 1 consecutive numbers k —1,k,...,k+ z— 1, exactly one
is divisible by z + 1; this number lies in ;S(z) if and only if k¥ — 1 is not
a multiple of z + 1.

Observation 2. Let ,5(2z) be a sequence consisting of two consecutive
basic z-sequences, where a = (asas—1...a2a10),. If ay < z — 1, then
09(272) contains a number whose o,-value is divisible by z + 1.

In this case ,S(22) = 45(2)at25(2), where a + z = (asas—1 ...az2a1 +
10),, so 0.(a+ z) = 0.(a) + 1. Therefore, by Observation 1, either ,5(z)
or 44.5(2) contains a number with o,-value divisible by 2z + 1.

Observation 3. If z is odd, then in any sequence ,S(2z) consisting
of two consecutive basic z-sequences, there is a number with o,-value
divisible by z + 1.

Let a = (asas—1 . ..a2a10), be the starting number of the first sequence.
By Observation 2, the statement is true if a; < z — 1. Thus, it suffices
to consider the case where

a=(as...ag+1(z—1)...(# —1)0),

for some k > 0, where a1 < z — 1. Then the starting number of the
second basic z-sequence is

a+z=(as...apt2(ak+1 +1)0...0),.
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Thus, 0,(a+ z) — 0.(a) = —k(z — 1) + 1. But this is an odd number, so
it cannot be divisible by z+ 1. Hence o, (a) and o, (a+ 2) yield different
remainders when divided by z 4+ 1. It now follows from Observation 1
that at least one of ,5(z) and ,4,5(2) contains a number with o,-value
divisible by z + 1.

Based on these observations, we can deduce the following statement.

Corollary. Any sequence of 4z—1 consecutive numbers contains a num-
ber with o, -value divisible by z+ 1. In fact, if z is odd, then any sequence
of 3z — 1 consecutive numbers contains a number with o,-value divisible
by z + 1.

Indeed, a sequence of 4z — 1 consecutive numbers must contain three
consecutive basic z-sequences (otherwise the length of the sequence could
not be greater than (z —1)+22z+(2z—1) = 42—2), and at least one of the
first and second of these sequences would start with a number satisfying
the condition for Observation 1. When z is odd then we can do even
better: a sequence of 3z — 1 numbers contains at least two consecutive
basic z-sequences and thus following Observation 3, there is a number
in the sequence whose o,-value is divisible by z + 1.

Now we want to show that these are actually the minimum values we
are looking for.

Theorem.

Min(z) 4z —1 if z is even,
in(z) =
3z—1 ifzis odd.

Let us first consider the case where z is odd. As a counterexample
we need a sequence ,—,115(3z2 —2) = 4—.4+15(2 — 1)aS(2)a1:5(z — 1),
where a = (as...a10), and the remainder of o,(a) by z + 1 is 1 (see
Observations 3 and 1). Actually, 15(3z —2) = (1,2,...,32z — 2) is such
a sequence and the table below shows that none of the o,-values are
divisible by z + 1.

a 1o fz=1] 2z ]| @2z=1)||22] - |32—2
inbasez || T| - | =1 ||[TO | ---| 1I(z—1) 20 | - | 2(2—-2)
o.(a) 1| lz=111/:--- z 2 |- z

In fact, if we choose 0 < a; < z — 1, while assuring that ¢,(a) has a
remainder 1 by z + 1, then the o,-values of the numbers in the sequence
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will still have the same remainders as above and thus those sequences
will also be counterexamples.

Suppose now that z is even and let us try to construct a sequence
of 4z — 2 consecutive numbers such that the o.-value of none of these
numbers is divisible by z+1. By Observation 2, this sequence of numbers
must not contain more than two consecutive basic z-sequences. Hence it
contains exactly two such sequences, which are preceded and followed by
z — 1 numbers. Furthermore, the two basic z-sequences must start with
a and a + z such that o,(a) and o,(a + z) both give remainder 1 when
divided by z 4 1, otherwise Observation 1 would ensure the existence
of a number with ¢,-value divisible by z + 1. So a must be of the form
described in the proof of Observation 3. With the notation used there,
we have o,(a + z) — 0.(a) = —k(z — 1) + 1. The divisibility conditions
imply that both this and o,(a + 2) — 1 = a5 + ... + a1 should be
divisible by z 4 1. The first is equivalent to saying that

(z4+1) | —k(z—1)+1+4+k(z+1) =2k +1,

and clearly, k = % satisfies this. The easiest way to satisfy the second
divisibility condition is to set as = ... = ax+1 = 0. So we choose the
sequence

a—z4+18(42 = 2) = 4—2415(2 — 1)aS(2)a+25(2)at2:5(2 — 1)

with a = ((z —1)...(2 — 1)(z — 1)0),, where the number of the digits
equal to (z — 1) is k = 5. Now we need to check that also the o.-values
of the numbers in the “incomplete” subsequences ,—,4+15(z — 1) and
a+2:5(z — 1) are not divisible by z + 1. The first number of the sequence
a—z1S(z—1isa—z+1=((z—1)...(z—1)(z — 2)1),, and thus

ola—z+1)= (%—1) z—-1)+(z—-2)+1= g(z—l) =0,(a).

Since 2(z—1) = (2+1) (£ — 1) + 1, the remainder of both ¢ (a) and
of 0,(a—2+1) is 1 when divided by z + 1. Furthermore, a + z = zK*! =
(10...000),,and a+22 =21 +2=(10 ... 010),, with o,-values
1 and 2. Thus the remainder terms of the o,-values of the 4z —2 numbers
are

(1,...,z=1)(1,...;2)(1,...,2)(2,...,2).

This shows that neither of the o,-values of the 42—2 consecutive numbers
in ,_,115(4z — 2) is divisible by z + 1.
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As a concrete illustration, consider the case where z = 60. To find
a counterexample in this case, we need numbers that have at least 32
digits (in base 60) and at least 56 digits in the decimal system. To be
more specific, using the following standard way of denoting the digits in
the sexagesimal system

1 2 3 4 5 6
8 9 A=10|B=11|C=12
V=31 =32 X=33|Y=34|2=35|a=36
b=37| c=38 | d=39 | e=40 | f=41 | g=42
t=55 | u=56 | v=57 | w=>58 | x =59 0

we may display the situation in the following table:

segment value of o
XXX XXX XXXXKXXXXXXXXXXXXXXXKXXXXW 1 1770
13264435183244001473986559999999999999999999999999999881 decimal
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXW 2 1771
13264435183244001473986559999999999999999999999999999882 decimal
XXX XXXXX XXX XXX XXX XXX XXX KXXXXXXWW 1827
XXX XX XXX XXX XXX XXX XXX XXX XXX XXXWX 1828
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX0 1770
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ] 1771
XX XXX XXX XXX XXX XXX XXX XXX XXX XXXXX 1829
10000000000000000000000000000000 1
10000000000000000000000000000001 2
1000000000000000000000000000000x 60
10000000000000000000000000000010 2
10000000000000000000000000000011 3
1000000000000000000000000000001w 60
132644351832440014739865560000000000000000000000000000118 decimal

Table 1 The segment of the length 238 in the sexagesimal system and
the translation into the decimal system
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Energie vétru

Oldrich Lepil, Prirodovédeckd fakulta UP, Olomouc

Vétrné elektrarny jako alternativni zdroje elektrické energie jsou v sou-
¢asnosti ve stfedu pozornosti celé spolec¢nosti. D¥ive to byly hlavné te-
pelné elektrarny, které pracuji na zakladé termodynamickych zékon.
O nich vime, Ze cyklus takového tepelného stroje mé svoje omezeni,
kter& urcuji Géinnost pfemény tepla na mechanickou energii. V tomto
piispévku se podivame, zda existuji obdobna omezeni i¢innosti pfemény
energie proudiciho vzduchu na mechanickou energii pro pohon elektrarny.

Uréime energii vétru a posoudime moznost jeji pfemény na energii
otacivého pohybu soustroji vétrné elektrarny. Budeme uvazovat vétr-
nou elektrarnu, jejiz rotor ma prumér d = 2r, takze ucinné plocha S
rotoru vétrné elektrarny, kterou proudi vzduch, bude S = nr? (obr. 1).
Vzduch ma hustotu p a vypocet provedeme pro rovnomérny pohyb vzdu-
chu stalou rychlosti v. Jestlize vzduch urazi za dobu At drdhu As, bude
hmotnost vzduchu, ktery projde t¢innou plochou rotoru, m = pSAs a
celkova kineticka energie vzduchu je

1 1
Ey = §mv2 = §pSAS1)2.

Obr. 1
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Pokud by veskerou tuto energii bylo mozné vyuzit, ziskali bychom

vykon
P = % = 1pS E1}2 =
At 27 At

7 tohoto vztahu je zfejmé, ze pro vyuziti vétrné energie je rozhodujici
rychlost vétru. Kdybychom uvazovali napf. primérnou rychlost vétru
v Ceské republice ve vyice 10 m nad zemi, ktera je 4 m-s~', byl by
pii hustoté vzduchu p = 1,2 kg- m~3 vykon piipadajici na 1 m? aéinné
plochy rotoru P/S = 0,6v% ~ 38 W-m~2 (veli¢ina se oznacuje jako
hustota vykonu). Vétrné elektrarny se buduji v lokalitach, kde je pri-
mérn4 rychlost vétru alespoit 6 m-s—!, a tomu odpovida hustota vykonu
130 W-m™2, tedy témér 3,5krat vetsi.

Vykon vétrné elektrarny ovliviiuje také hustota vzduchu, ktera se
v misté elektrarny miize ménit v zavislosti na zménach tlaku a tep-
loty vzduchu. Pro urceni hustoty vzduchu vyjdeme ze stavové rovnice
idealniho plynu ve tvaru

1
5/)5113.

m
= —RT
pV 7 RT,
kde My, = 29-1073 kg-mol~! je efektivni molarni hmotnost vzduchu.
Pro hustotu vzduchu pak plati vztah

m My p 1 p
PZV T RT 8TT
kde p je tlak vzduchu v pascalech a T je termodynamicka teplota vzduchu
v kelvinech. V blizkosti povrchu Zemé lze pfi zjednodusenych vypoctech
uvazovat jiz uvedenou piibliznou hodnotu hustoty vzduchu 1,2 kg-m—3.
V praxi je vSak moZzné vyuzit jen podstatné mensi ¢ast energie vé-
tru. Timto problémem se ve 20. letech 20. stoleti zabyval rakousky in-
Zenyr Albert Betz (1885-1968), ktery zkoumal moZnost vyuZiti energie
vétru k pohonu. Jestlize napf. plochou rotoru proudi vzduch rychlosti vy
(vstupni rychlost), pfedava mu ¢ast energie a rychlost vzduchu se zmensi
na rychlost vy (vystupni rychlost). MuZeme uvaZovat, Ze vzduch zafize-
nim proudi primeérnou rychlosti ¥ = (v; + v2)/2 a hmotnost vzduchu,
ktery projde rotorem za jednotku casu, ¢ili hmotnosti tok vzduchu je
m = pSv. Na vstupu elektrarny mé vzduch energii Ey; = %mvf a na
vystupu energii Eyo = %mvg . Je tedy mozné ziskat energii
1

1 1
AE =FEy — Exs = 5* (vf —v3) = 5,05- 5(111 +v2) (v —03).
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Diilezité vsak je, jak tato energie zavisi na poméru obou rychlosti. Ozna-
¢ime 2 pomér rychlosti (x = vy/v1) a
1 1
y= 5(014-112) (v} —v3) = 51}? (1-—2*+z—2%.
Na obr. 2 je graf zavislosti y = f(z), z néhoZ je patrné, Ze veli¢ina y
dosahuje maxima pfi hodnoté = = 0,33, tedy kdyz rychlost na vstupu
zafizeni je 3krat vétsi nez na vystupu (ve/vy = 1/3).

2 x=0,33
1 y=0.59)]|
0,6 7
i / | B
1 I \
05 i ~
g |
] |
] |
0,4 : AN
] | \
g | N
|
0,3 i
] I
. |
] |
0,2 7 T N
] \
] [
] | \
0,1 f
1 I
7 I
b |
0 A
0 01 02 03 04 05 06 07 08 09 1 1,1

Obr. 2

Provedeme vypocet veli¢iny y pro tento pomér rychlosti, pfi némz se
maximalni ¢ast energie vétru preméni na rota¢ni energii:
1 1 1Yy 16 4

1. 1
fvf(17x2+xfx3):fv§’ <1+) =7 U = 0,59 v3.

¥y=3 2 93 27

Odtud vyplyva, ze maximalni vykon zafizeni vyuzivajiciho energii vétru
je

1
Prax = 0,59 - 5psvi’.

Tento vztah se oznacuje také jako Betzovo pravidlo. Maximalni dosa-
zitelnd hustota vykonu pfi rychlosti vétru v je s ohledem na Betzovo

pravidlo dana vztahem

Prax
T‘“‘ ~ 0,350%.
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Teoretickd nejvétsi ucinnost zafizeni vyuzivajicich energii proudiciho
vzduchu je tedy necelych 60 % celkové kinetické energie vzduchu. Ani nej-
modernéjsi systémy soucasnych vétrnych elektraren v8ak této uéinnosti
nedosahuji, ponévadz dochézi k dal$im ztratdm energie. Jsou to jednak
ztraty v mechanickém soustroji elektrarny, jednak ztraty v elektrickych
obvodech generatoru a pii transformaci vystupniho napéti elektrarny.
To zptuisobuje, Ze vétrné elektrarny vyuZivaji pfiblizné jen 30 % az 45 %
energie vétru.

Napitklad vétrna elektrarna v CR u obce Pchery mé rotor o praméru
100 m a jeho osa je ve vysce 88 m. Startovni rychlost vétru je 4 m-s~!,
jmenovita rychlost 12,5 m-s~! a vypinaci rychlost 22 m-s~!. Jmenovity
vykon elektrarny je 3032 kW. Energie vétru pfi jmenovité rychlosti a

hustoté vzduchu p = 1,2 kg-m™3 je

1
P= 5p5v3 ~ 9400 kW.

Vzhledem k jmenovitému vykonu elektrarny je vyuZito pfiblizné jen 32 %
energie vétru, coz je 56 % maximalné vyuzitelné energie uréené Betzovym
pravidlem.

Dosud jsme si v§imali jen zmén rychlosti proudéni vzduchu pred vrtu-
lemi rotoru elektréarny a za rotorem, pficemz vy < v1. Soucasné budeme
predpokladat, ze vzduch proudi plochou rotoru primeérnou rychlosti @.
To znamené, Ze podle zakona zachovani energie, vyjadifeného Bernoulli-
ovou rovnici, dochézi v misté rotoru k poklesu tlaku vzduchu Ap. Tomu
odpovidé vznik tahové sily T rotoru, které je dana rozdilem tlaka tésné
pred rotorem a za nim. M4 velikost 7' = ApS, kde S je plocha rotoru.
Tahovou silu lze soucasné vyjadrit na zakladé 2. Newtonova pohybového
zékona jako zménu hybnosti vzduchu, ktery prosel rotorem za jednotku
asu, ¢ili T = m(vy +v2), kde T je hmotnostni tok vzduchu. Nejvice nas
vSak zajima vykon P, ktery lze proudénim vzduchu rotorem ziskat:

2 2

P = m(vl—UQ).

N |

Pro posouzeni vlivu rychlosti vétru na tahovou silu rotoru a vykon
elektrarny se zavadi bezrozmérova veli¢ina, axidini indukcni faktor a. Je
definovan vztahem

v — U
- bl

U1
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takze v = v1(1—a) a va = v1(1—2a). S pouzitim soudinitele a vyjadiime
velikost tahové sily
T = 2mvia(l — a)

a vykon
P = 2mv?a(l — a)?.

Porovname tahovou silu s maximalni hodnotou danou dynamickym
tlakem vzduchu proudiciho rychlosti vy

1 1
Tmax = §pSvf = imvl.

a definujeme velic¢inu tahovy soucinitel C

T 2my 1-—
CT = = mvli( a) = 40/(1 — a).
,Armax 5MU

Graf soucinitele tahu C'r = f(a) je na obr. 3.

i

]
1 C/f i ﬁ‘\\
X
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\ \
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Obr. 3

Optimalni rychlosti v proudéni vzduchu rotorem odpovida maximum
této funkce, kterou uréime anulovanim jeji derivace

dC'r d
— = — |4a(1 — =4—-da=U=a=0U,.
[4a( a)l=4—-8a=0 a=0,5
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7Z vysledku vyplyvé, ze maximélni tahové sily lze dosdhnout v pripadé, ze
rotorem protéka vzduch poloviéni rychlosti, nez je rychlost volné prou-
dictho vzduchu (7 = 0,5v1). Pfi této hodnoté soucinitele ¢ ma pomér
rychlosti vy /v; nulovou hodnotu (viz zelené na obr. 3) a pfi vétsich hod-
notach a je pomér rychlosti zaporny, coz postrada fyzikalni smysl. Proto
hodnotou a = 0,5 také koné&i platnost Betzova pravidla (tzv. Betziv li-
mit).

Obdobnou tvahou porovname celkovy vykon volné proudiciho vzdu-

chu

1 1
Prax = §pSv 2 = imvz

s vykonem P a ur¢ime vgkonovy soucinitel Cp

P
Pmax

Zavislost Cp = f(a) je rovnéz na obr. 3. Vidime, Ze maximum dosahuje
pfi mensi hodnoté a a tedy pfi mensi rychlosti. To opét zjistime uréenim
maxima:

d d
% ~da [4(1(1*“)2] =1-4a+3a>=0=ac{1,1/3}.
Pro a = 1/3 plati

4 1 16
Cp,. 3 < 3> o7 0,593

Vysledek odpovida Betzovu pravidlu, odvozenému v prvni ¢asti pii-
spévku.

Dospéli jsme k zavéru, ze tahova sila rotoru vétrné elektrarny zavisi
na druhé mocniné rychlosti vétru a priaméru rotoru a na souciniteli tahu.
Snahou je minimalizovat tah rotoru pro danou rychlost vétru a primér
motoru, tzn. pro co nejmensi hodnoty Cr. Vykon elektrarny zavisi na
tfeti mocniné rychlosti vétru, na druhé mocniné primeéru rotoru a na
souciniteli Cp.

Cp = = 4a(1 — a)?.
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Véda vs. konspirace:
Pro¢ se vlastné zdrzovat védou?

Leontijna glégrovci, Jan S'légr
Prirodovédeckd fakulta Univerzity Hradec Krdlové

Abstrakt. Jak poznat rozdil mezi védeckou teorii a konspira¢nim tvrzenim?
V c¢lanku ukazujeme, ze védecké teorie musi byt v souladu s ovéfenymi po-
znatky, jejich vysledky musi byt mozné nezévisle zopakovat a prochéazeji piis-
nym recenznim fizenim. Na pfikladech teorii duté Zemé, studené faze nebo
tdajného supravodice LK-99 ukazujeme, pro¢ je reprodukovatelnost kli¢em
k potvrzeni objevii. Zaroven upozoriujeme na rozdil mezi skuteénymi odbor-
nymi Casopisy a publikacemi, které otiskuji ,zazracné* vysledky bez kritické
kontroly.

Uvod

V predchozich dvou dilech naseho seridlu jsme se zabyvali tim, Ze
konspiraéni teorie Casto neuspé&ji pri experimentalnim ovérovani jejich
tvrzeni a také tim, Ze konspira¢ni teorie ¢asto ani experimentéilné oveérit
nejde — jsou ¢asto formulovany tak, aby nebyly falzifikovatelné. V tomto
dile se podivame na dalsi vlastnosti skuteénych védeckych teorii, které
konspiraéni teorie ¢asto postradaji.

Konzistence s existujicimi poznatky

Tvrzeni konspira¢nich teorii ¢asto nejsou v souladu s obecné uzna-
vanymi teoriemi (coZ jsme vidéli jiz na p¥ikladu ploché Zemé). Poudeny
¢tenar by mohl namitnout, Ze napiiklad takova specidlni teorie relativity
prece také byla v rozporu s do té doby uznavanou newtonovskou fyzikou,
a presto bylo experimentélné dokézéno, ze je spravna. OvSem specialni
teorie relativity neni s newtonovskou fyzikou v rozporu — pro malé rych-
losti jeji popis reality piechézi v popis klasicky: Lorentzuv faktor se pro

malé rychlosti blizi jednicce:

1
lim —=1.

v—0 02
c2

Relativistické rovnice pak prechéazeji v rovnice, které zname z klasické
(newtonovské) fyziky.
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Protoze teorii ploché Zemé, ktera je v piikrém rozporu s klasickou
astronomii, geofyzikou, gravimetrii, optikou a lecéim dal$im, jsme uz
resili, ukazeme si vySe uvedené na piikladu jiné konspiracni teorie o tvaru
nasi planety, a sice na teorii duté Zemé.

Myslenka duté Zemé se poprvé objevila v 17. stoleti, kdy se Edmund
Halley snazil vysvétlit anomaélie v magnetickém poli, zejména magnetic-
kou deklinaci (Ze kompas na riznych mistech neukazuje piesné k zemé-
pisnym polim Zemé) a to, Ze se magnetické poly Zemé pohybuji. Navrhl
hypotézu, ze je Zemé tvorena nékolika soustfednymi kulovymi vrstvami,
které jsou oddéleny dutinami, a z nichz kazda mé své vlastni magne-
tické pole. Podle Halleyho se tyto vrstvy mohou nezavisle otacet, coz
by vysvétlovalo pomalé posuny magnetickych poéla a slozity charakter
magnetického pole [1]. To byla ve své dobé naprosto prijatelna hypo-
téza, protoze v té dobé jesté neexistovala seismologie, ktera by popsala
nitro Zemé, ani geofyzikalni modely jadra, které popisuji vznik magne-
tického pole Zemé. Koneckonci, gravitacni méreni hustoty Zemé provedl
Cavendish az v roce 1798. Halleyho hypotéza nebyla konspira¢ni — byla
zaloZena na tehdy dostupnych datech.

Situace se zménila v 19. stoleti, kdy John Cleves Symmes propago-
val teorii tzv. ,polarnich otvord“, kterymi by bylo mozné vstoupit do
nitra planety, a kdy vznikla i komunita kolem predstavy Cyruse Teeda,
ktery jako prvni tvrdil, Ze lidé ve skute¢nosti Ziji uvniti duté Zemsé.
Pro nékoho, kdo je seznamen se zadkladnimi myslenkami ploché Zemé, to
nen{ nic nepfedstavitelného — prosté Zijeme na vnitinim povrchu koule
a to, ¢emu fikdme vesmir, je jakysi mlzny oblak se dvéma vétsimi télesy
(Sluncem a Mésicem), ktery se otaci uprostied kulové dutiny. Pozdgji
vznikly rtizné okultni teorie, v nichz napf. némecké spole¢nosti jako Vril
a Thule kombinovaly mySslenky duté Zemé s mysticismem, ztracenymi
civilizacemi a energetickymi zdroji. Jacques Bergier ve své knize Jitro
kouzelniki [2] dokonce piSe, Ze za druhé svétové valky némecti védci za-
métovali radarové viny tak, aby se odrazily od vnitiniho povrchu planety
a umoznily sledovat objekty na opac¢né strané Zemé. Toto tvrzeni vSak
neni dolozeno zadnymi historickymi prameny ani technickymi udaji a
vétsina historikt ho povaZzuje za Bergierovu fabulaci. Neexistuje zZadny
ditkaz, ze by Wehrmacht ¢i SS vyvijeli technologii zaloZzenou na modelu
duté Zemé

DV tuto chvili jsme z jedné konspira¢ni teorie plynule presli do druhé; to se obc¢as
stane. Berme to ale rovnéz jako ukazku toho, Ze nesmysly nemusi byt jen na Internetu,
ale i v tist&nych knihach.
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Moderni véda poskytuje jednoznacné dikazy, ze Zemé dutd neni:
Seismologie vyuziva zemétiesné vlny k urceni struktury nasi planety.
Seismologie nam umoziuje zjistit vnitini stavbu Zemé diky analyze Si-
feni seizmickych vln, které vznikaji pfi zemétfesenich nebo umélych ex-
plozich. Existuji dva hlavni typy vin: P-vlny (primarni, podélné) se Sifi
stlac¢ovanim a rozpinanim hornin a dokaZou prochazet pevnymi, kapal-
nymi i plynnymi latkami, zatimco S-vlny (sekundérni, p¥i¢né) se 3i¥i
kmitdnim kolmo na smér pohybu a neprochéazeji kapalinami. Méfenim
rychlosti, odrazi a lomiu téchto vln v riznych hloubkach dokazeme ur-
¢it, kde se méni hustota a sloZeni hornin (viz obr. 1). Pokud napiiklad
S-vlny uréitou oblasti viibec neprochazeji, znamena to, Ze tam musi byt
kapalné prostiedi.

Epicentrum zemétreseni

Stanice zaznamenaji
jak P-viny, tak S-viny

Stanice nezaznamenaji
ani P-viny ani S-viny

140°

' Stanice zaznamenaji
Stin, kde nejsou S-viny pouze P-viny )

Obr. 1: P-viny a S-vlny p¥i prichodu Zemi. Ptivodni obrazek (C) Pearson Pren-
tice Hall, Inc.

Diky této metodé védci zjistili, Ze Zemé mé vrstvenou strukturu: ten-
kou karu, silny plast, kapalné vnégjsi jadro a pevné vnitini jadro. Klicové

objevy pfinesl Richard Oldham (1906), ktery z absence S-vln usoudil,
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Ze Zemé musi mit kapalné vnéjsi jadro, a Inge Lehmann (1936), jeZ ob-
jevila pevné vnitini jadro podle odrazii P-vin. Kdyby byla Zemé duta,
seizmické viny by se chovaly zcela jinak — vznikaly by rozsahlé tiché zony
a naméfené signaly by se zésadné lisily od toho, co dnes pozorujeme. Na-
vic gravitaéni méfeni dokazuji, Ze hustota Zemé& &ni asi 5500 kg-m~3,
coz by bylo u duté planety nemozné.

Ke stejnému vysledku lze dojit také z ob&hu Mésice kolem Zemé (sa-
moziejmé pokud predpokladame, Ze Meésic obihé kolem témér kulové
Zemge): Gravitacni sila, kterou Zemé ptisobi na Mésic, je silou dostfedi-
vou, ktera jej udrzuje na kruhové trajektorii:

2
v Mz M;
My— = G232
r r
Hmotnost orbitujiciho t&lesa se zkrati (takZe hmotnost Mésice nemu-
sime znat) a ze znamé doby obéhu (27,3 dne) a obvodu ob&zné drahy
(uvazujeme kruznici s polomérem 384 000 km) ur¢ime hmotnost Zemé:
2 2 2,.3
vir  (2rr)*r Antrs | o4
My=—=-""24—=—— =6,02-10" kg.
2TG T arr T are 8
Pokud budeme uvazovat Zemi jako kouli o poloméru 6 371 km, ziskime
hustotu M
p= 4o =5500 kg-m>.
3Tl

Méme tedy nékolik nezéavislych dikaznich linii, které sméfuji ke stej-
nému zavéru: Zemé ma vrstvenou strukturu. Magnetické pole navic vznika
v kapalném vné&jsim jadru, coz koncept duté Zemé vyluc¢uje. Souc¢asné ge-
ofyzika tak poskytuje konzistentni model, ktery experimentalné vyvraci
vSechny varianty teorie.

Reprodukovatelnost vysledki

Na prvni pohled to vypada jako samoziejmost, ale pokud mame teorii,
ktera néco predpovida, musi byt dany postup nebo experiment nezévisle
reprodukovatelny dalsimi vyzkumniky.

Naprtiklad teorie ploché Zemé v jedné ze svych variant pracuje s tim, ze
Slunce ve skuteénosti nezapada (kam by taky zapadalo na ploché Zemi,
7e), ale Ze se od pozorovatele pouze vzdaluje. To dokladaji riznymi ob-
razky a videi, kdy pomoci zoomu fotoaparatu ,vytahnou* Slunce zpoza
obzoru, pfipadné ukazuji, Ze vecer ma Slunce jinou velikost neZ pfes den.
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Autofi tohoto ¢lanku se pokusili jejich tvrzeni ovéfit a pomoci fotoapa-
ratu s astronomickou solarni folii zjistili, Ze se velikost slune¢niho disku
b&hem dne neméni (i kdyZz béhem zapadu miize byt deformovan vlivem
lomu svétla v atmosféfe) a Ze ani 125nasobnym zoomem neni moZné
Slunce u obzoru najit, jakmile jednou zapadne.

Tento pozadavek je standardni soucéasti védecké prace: Napt. v bifeznu
1989 oznamili chemici Martin Fleischmann a Stanley Pons z University
of Utah, Ze dosahli studené faze — jaderné reakce uvoliujici energii pii
pokojové teploté. Aby lehéi jadra sfiizovala na jadra téZsi, je potieba pfe-
konat elektrostatickou silu, ktera je odpuzuje. Pokud se jadra dostanou
dostatecné blizko k sobé, prevazi silnd jaderna sila a dojde ke slouceni
jader a uvolnéni energie. Proto fuzni reakce probihaji za vysokych tep-
lot, kdy maji ¢astice takovou rychlost, Ze se dokazi dostat blizko k sobé
alespoi na tak dlouho, aby silné sila prevazila predtim, nez ¢astice roze-
zene elektrostaticka sila. Ve hvézdach se to déje tak néjak automaticky,
na Zemi jsou k tomu potfeba slozita zafizeni, jako je napf. tokamak.
Proto by studenéa fuze byla revoluénim zdrojem energie. Fleischmann a
Pons tvrdili, Ze v elektrolytickém ¢lanku s palladiovou elektrodou a téz-
kou vodou (D20) namérili nadbyteéné teplo a produkty jaderné reakce,
zejména neutrony, coz by znamenalo, Ze skuteéné dochazi k jadernym
reakcim.

Kréatce po zvefejnéni probéhly desitky nezavislych pokusi, ale vét-
Sina laboratofi nedokazala vysledky zopakovat. Dalsi analyzy ukazaly, Ze
pozorované efekty lze vysvétlit chybami méfeni a chemickymi procesy,
nikoli jadernou fuizi.

Pripad zptisobil obrovsky medialni rozruch, ale védecka komunita jej
nakonec odmitla, protoze reprodukovatelnost je zékladnim kritériem po-
tvrzeni objevil.

K podobné situaci doslo pomérné nedavno: V Cervenci 2023 korejsky
tym vedeny Sukbaeem Lee a Ji-Hoonem Kimem zvefejnil objev materi-
alu LK-99, ktery se chové jako supravodi¢ za pokojové teploty a normal-
niho tlaku [3]. Jako supravodi¢e oznac¢ujeme materidly, které maji nulovy
elektricky odpor, coz je velmi uziteéna vlastnost pro energetiku — napft.
v urychlova¢i LHC v CERNu se pouzivaji supravodivé vodic¢e z niobu a
titanu (NbT1i), které pracuji p¥i teploté asi 1,9 K a umoziuji vést proudy
kolem 12 kA bez odporu a ztrat tepla. Pokud bychom chtéli stejny proud
vést b&Znym médénym vodic¢em pii pokojové teploté, musel by mit ob-
rovsky priifez — pro ztraty jen 1 kW na kilometr by vychéazel prifez asi
2,5 m2, tedy kabel o praméru piiblizné 1,8 metru. Jinak by dochézelo
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k masivnim tepelnym ztratam. Diky supravodivosti mohou mit vodice
v LHC mnohem mensi prameér.

Vsechny znamé supravodice vSak maji jedno spoleéné — funguji pouze
pri velmi nizkych teplotach. Nékterym staci chlazeni kapalnym dusikem
na 77 K, ale jiné vyzaduji jesté nizsi teploty, dosazitelné jen pomoci ka-
palného helia. Proto by supravodi¢ funkéni za pokojové teploty znamenal
energetickou revoluci. O to vétsi rozruch vyvolal LK-99, slozeny z bézné
dostupnych prvka (olovo, méd, fosfor a kyslik).

Obr. 2: Udajna levitace vzorku materialu LK-99 (https://en.wikipedia.org/
wiki/LK-99)

Autofi publikovali na serveru arXiv dva ¢lanky, v nichZ uvadéli, ze
pozorovali nulovy odpor a ¢aste¢nou levitaci vzorki v magnetickém poli
— typicky znak supravodivosti — a navic pridali i ndvod na syntézu ma-
terialu. Desitky laboratofi po celém svété se proto okamzité pustily do
pokust o reprodukci vysledki. Béhem nékolika tydnu se ale ukazalo, ze
tvrzeni nejsou spravna: vétSina nezavislych tymia misto supravodivosti
naméfila chovani typické pro polovodi¢e nebo izolanty. Podrobné ana-
lyzy nakonec ukézaly, Ze zvlastni magnetické projevy LK-99 souvisely
s pfitomnosti necistot z fosfidu médi (CuyP), ktery je feromagneticky, a
ze puvodni experimenty mély metodické chyby. Do konce srpna 2023 byla
hypotéza o supravodivosti LK-99 povaZzovana za vyvracenou a piipad se
stal dalsim pfikladem, pro¢ je nezavisla reprodukovatelnost vysledkt pro
védu zasadni — podobné jako u piipadu studené fuze z roku 1989.

Co se tyce konspira¢nich teorii, asi nejpopularnéjsi teorii, ktera se
vzpira nezévislému ovétreni vysledk, jsou rizna zafizeni vyuzivajici ,yvol-
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nou energii, tedy zafizeni, ktera bychom bez uzardéni mohli oznacit
jako perpetuum mobile. Obvykle se objevuji védecky znéjici pojmy jako
nulovy bod energie vakua, magnetické generatory nebo to, Ze jsou zafi-
zeni inspirovanéa Teslovymi patenty (které ale podle jinych teorii idajné
skoncily v trezorech zlot¥ilych korporaci, které je pred vefejnosti taji).
Typicky jsou prezentovina videa, kde se to¢i motory, rozsvécuji zarovky
nebo napéjeji spotiebice ,bez vstupni energie”. Spoleénym znakem vét-
Siny téchto konstrukei je, Ze neexistuje zadna ovéfena dokumentace, pu-
blikace v recenzovanych Casopisech ani nezavislé testy, které by jejich
funkénost potvrdily. Casto se ukaze, ze zafizeni ve skute€nosti vyuziva
skryté napajeni nebo se spoléhé na akumulovanou energii, takze nedo-
chéazi k Zadnému poruseni fyzikalnich zakonii.

7Z fyzikalniho hlediska je problém v tom, Ze tato zafizeni Casto pred-
pokladaji poruseni zakona zachovani energie. Podle prvni véty termody-
namiky nelze vyrobit vice energie, nez do systému vstupuje, a jakékoliv
zafizeni, které by trvale dodavalo energii bez paliva nebo jiného zdroje,
by muselo byt perpetuum mobile prvniho druhu — coZz odporuje experi-
mentalné potvrzenym fyzikidlnim principim. Pfesto maji ,zdroje volné
energie velky medialni i komer¢ni ohlas. Na internetu se §ifi schémata,
navody a videa, ale pokud se nékdo pokusi tyto konstrukce nezévisle
reprodukovat, obvykle se ukaze, Ze zafizeni nefunguje, nebo poskytuje
jen zanedbatelny vykon vyuZivajici b&Zné fyzikalni jevy. Tento fenomén
ukazuje, jak dulezita je kritickd analyza tvrzeni a ovéfovani reproduko-
vatelnosti vysledka.

Peer review (recenzni Fizeni)

V predchozi kapitole jsme natukli dalsi dilezitou vlastnost skuteénych
védeckych teorii — vychézeji v odbornych ¢asopisech. Ty totiz pfed zve-
fejnénim ¢lanku provadéji tzv. peer review — ¢lanek se posle dvéma az
tfem odbornikim ze stejného oboru, ktefi posoudi jeho kvalitu a meto-
diku. Recenzenti ¢lanek obvykle dostanou anonymizovany, aby hodnotili
obsah a ne jméno autora. Proces je ¢asto dlouhy a pro autory tmorny —
recenzenti mohou navrhnout rozsihlé apravy, nebo dokonce ¢lanek za-
mitnout, pokud méa zasadni metodické nedostatky. To je soucésti nor-
malni védecké praxe a divod, pro¢ jsou publikované ¢lanky povazovany
za ovérenéjsi nez tvrzeni na blogu nebo na socialnich sitich.

V oblasti alternativni mediciny se ¢asto setkavame s tvrzenim, Ze po-
pis ,zézracnych 1éka proti rakoviné* v odbornych ¢asopisech chybi kvtli
spiknuti farmaceutickych firem. To je typicky znak konspiracnich teorii:
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predpokladaji, Ze ,vladnouc elity” zamérné taji pravdu, aby chréanily své
zisky. Homeopaté tento ,problém" vyftesili tak, ze si zalozili vlastni ¢aso-
pisy, napiiklad Indian Journal of Research in Homeopathy. Ten sice tvrdi,
ze provadi peer review, ale recenzni proces probiha témér vyhradné mezi
zastanci homeopatie, coz znamené, ze kritickd kontrola chybi. éasopis
navic publikuje témér vyhradné pozitivni vysledky, coz je ve skuteéné
védé velmi podezielé — i u¢inné léky nékdy nefunguji tak, jak se oceka-
valo, a o téchto netspésich se bézné publikuji ¢lanky.

Podobnych ¢asopisi je vice. Napiiklad Journal of Alternative and
Complementary Medicine otiskuje studie o homeopatii, akupunktute
nebo ,energetickém léc¢eni”, ale Casto bez dostatecné piisné metodiky.
Dalsi prikladem je fada predatorskych ¢asopisii, které vybiraji poplatky
za publikovani a prakticky neprovadéji recenzni fizeni — ¢lanek otisknou
bez ohledu na jeho kvalitu. Oproti tomu prestizni ¢asopisy jako Nature,
Science nebo The Lancet pozaduji pfisnou metodiku a zvefejiiuji i ne-
gativni vysledky. Napiiklad The Lancet v roce 2005 publikoval rozsah-
lou metaanalyzu 110 klinickych studii homeopatie a dospél k zavéru, ze
t¢inky homeopatie jsou srovnatelné s placebem [4]. To je dobry piiklad
toho, jak se ve védé postupuje — nespoléha se na jednotlivé ,zazracné
studie”, ale porovnéva se vétsi mnozstvi dat.

Podobné rozdily mezi védeckym piistupem a konspira¢nimi interpre-
tacemi najdeme i v jinych oblastech. Napftiklad po utocich z 11. zafi
2001 se na internetu rozsitily stovky teorii o tom, ze pad budov WTC
byl zpisoben fizenymi explozemi, nikoli narazem letadel. Konspira¢ni
weby Casto pracuji se zpomalenymi zabéry, neovéfenymi svédectvimi a
izolovanymi ,dikazy“, zatimco odborné studie publikované v recenzova-
nych ¢asopisech, napiiklad zpravy NIST (National Institute of Standards
and Technology), analyzovaly tisice fotografii, videozaznami, svédectvi
a dat z konstrukce budov. Vysledky ukazuji, Ze zhrouceni budov bylo du-
sledkem kombinace strukturalniho poskozeni a naslednych pozari, které
oslabily nosné konstrukcee [5]. Tady je dobfe vidét rozdil: zatimco védecké
publikace se snazi vyhodnotit vSechna dostupnéd data a uvadéji i miru
nejistoty, konspira¢ni teorie ¢asto vytrhavaji dil¢i informace z kontextu
a nedodrzuji metodické standardy.

Zavér

Ve védé nejde o to, kdo mé ,pravdu®, ale o to, které tvrzeni nejlépe
odpovidé pozorovanim a ovéfenym datim. Skutecné védecké teorie maji
nékolik spoleénych rysi: jsou konzistentni s ostatnimi poznatky, jejich
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zavéry lze nezavisle reprodukovat a prochazeji pfisnym recenznim ii-
zenim. Konspira¢ni teorie naopak ¢asto stoji na izolovanych tvrzenich,
ignoruji data, ktera se jim nehodi, a jejich ,yysledky* nebyvaji ovéritelné
ani reprodukovatelné. To neznamena, ze véda je neomylna — historie zna
mnoho pfipadi, kdy se teorie musely upravit nebo nahradit. Rozdil je
v tom, ze ve védé se teorie méni na zakladé novych dikazi, zatimco
konspira¢ni teorie se Casto prizpusobuji tak, aby byly nefalzifikovatelné
a jejich zavéry prezily bez ohledu na fakta. Zatimco véda své zavéry ové-
fuje a kontroluje, konspiracni teorie uz davno Zije na Internetu vlastnim
Zivotem.
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Vsechna licha ¢isla jsou prvocisla

Adam Blazek, student FJFI CVUT v Praze

Nejen ve fyzice, ale i v matematice je tfeba mit se na pozoru, jak
ukazuji nasledujici hravé ,dikazy“, které zcasti vysbiral, z¢asti vytvoril
autor ¢lanku.

Véta. Kazdé liché prirozené cislo vétsi nez 1 je prvocislo.
YneN n>1: 24n=>neP

Dikaz (matematicky). 3 je prvodislo, 5 je prvodcislo, 7 je prvodislo.
Zbytek dikazu je zfejmy, proto byl ponechan jako cviceni pro ¢tenaie.

Dikaz (teoreticky fyzikalni). n je prvocislo pravé tehdy, pokud 2{nA
A3tnAdtnA...A(n—1)tn. Pro jednoduchost viechny ¢leny kromé
prvniho zanedbame. Tedy pokud n neni délitelné dvéma, potom je pfi-
blizné prvodislo.

Diikaz (experimentalné fyzikalni). 3 je prvodislo, 5 je prvocislo, 7 je
prvocislo, 9 je chyba méfeni, 11 je prvocislo, 13 je prvoéislo, ...

Diikaz (inZenyrsky). 3 je prvocislo, 5 je prvocislo, 7 je prvocislo, 9 je
prvocislo, 11 je prvoéislo, 13 je prvodéislo, ...

Diikaz (anglicky). 3 is an odd prime, 5 is an odd prime, 7 is an odd
prime, 9 is a very odd prime, 11 is an odd prime, 13 is an odd prime, ...
Diikaz (marketingovy). 3 je prvodislo, 5 je prvodislo, 7 je prvocislo,
11 je prvocislo, 13 je prvodislo, ...

Diikaz (statisticky). 3 je prvodislo (s pravdépodobnosti p = 1), 5 je
prvocislo (p = 1), 7 je prvoéislo (p = 1), 9 je prvocislo (p = 0,857), 11 je
prvodislo (p = 1), 13 je prvodislo (p = 1), ...

Diikaz (demokraticky). Necht n je liché ¢islo vétsi nez 1. Zrejmé zadné
z &isel od (n+1)/2 do n—1 nedéli n. Téchto &isel je (n—1)/2 z celkovych
n — 2 ¢isel mezi 2 a n — 1. Jelikoz

n—1>n—2
2 2 7

je n z nadpolovi¢ni vétSiny prvocislo.
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Diikaz (kapitalisticky). Necht n je liché &islo vétsi nez 1. Z¥ejmeé zadné
7z Cisel od "TH do n — 1 nedéli n. Jelikoz tato ¢isla jsou vétsi nez vSechna
ostatni ¢isla mezi 2 a n — 1, je n prvodislo.

Dikaz (politicky korektni). Nékterym lichym ¢isltim sice byla po na-
rozeni netolerantni spolecnosti pfifazena role slozeného ¢isla, ale pokud
se sama identifikuji jako prvodisla, potom jsou to samoziejmé prvocisla.
Pokud bude nékdo vymazéavat jejich identitu, zafidim, aby byl(a/o/x)
vyhozen(a/o/x) z prace a ,zrusen(a/o/x)*.

Dikaz (naboZensky). Kdyz Buh tvofil vesmir, ze vSech moZnych ves-
miri si zvolil pravé ten, kde vSechna liché ¢isla vyssi nez 1 jsou prvocisla.
Neni to tzasné?

Ditkaz (pravnicky). V zakonu 1234/5678 §90 se piSe, Ze vSechna licha
¢isla vySsi nez 1 jsou prvocisla.

Dikaz (pomoci kryptomény). Uvedli jsme zpét do provozu starou
uhelnou elektrarnu a nechali nékolik dni béZet obrovskou serverovou
farmu, abychom ovérili, Ze prvni t¥i licha ¢isla vétsi nez 1 jsou skutecné
prvocisla. D4l jsme se zatim nedostali, protoZze na trhu dosly grafické
karty. Pokud chcete vydélat na vysledcich naseho vyzkumu, kupte si
OddPrimeCoiny™, dokud jsou levné!

Diukaz (programéatorsky v jazyce C). 3 je prvocislo, 5 je prvoéislo,
7 je prvocislo, Segmentation fault (core dumped)

Diikaz (analyticky). Necht n je liché ¢islo vétsi nez 1. Vezméme libo-
volné € > 0. Zjevné pro dostate¢né mala € nikdy nenajdeme a,b € N
takova, ze

a-b=n+e.

Cislo n je tedy limitng prvoéislo.

Dikaz (pomoci teorie miry). Mnozina lichych ¢isel vétsich nez 1,
ktera nejsou prvocisla, ma nulovou Lebesgueovu miru, mizeme ji tedy
zanedbat.

Diikaz (pomoci teorie mnozin). Existuje bijekce mezi mnoZinou li-
chych ¢isel vétsich nez 1 a mnozinou prvocisel riznych od 2, takze je
miiZzeme povazovat za ekvivalentni.
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Objemovy vykon aneb kdyZz pojem vykon nestaci

Véra Krajcova, FJFI CVUT v Praze

Pokud potizujeme jakykoli elektrospotiebi¢ do své domacnosti, jako
prvni nas zajimé jeho vykon. Ur¢ité si radsi poridime vykonnéjsi rych-
lovarnou konvici (mikrovlnnou troubu, pajecku, ...), kterd nam uvari
ranni ¢aj (ohfeje jidlo, roztavi pajku, ...) za kratsi dobu nez konvici
sice levnégjsi, ale s vykonem mensim (a tim i delsf dobou ohfevu). Oviem
co kdybychom pfi stejném vykonu ohfivali mnohem vétsi objem vody?
Pro porovnani vykonu ruznych tepelnych zdroju je vhodné zavést novou
fyzikalni veli¢inu objemovy vijkon. Nize si ukdzeme proc.

Zagneme pro nas tepelnym zdrojem nejvétsim — Sluncem. Jeho zafivy
vykon se da pomérné snadno vypocitat. Stac¢i si uvédomit, Ze Slunce
prekvapivé miZeme povazovat za absolutné ¢erné téleso (ano, nase ,bilé*
Slunce), a to proto, Ze mnoZstvi fotont vylétajicich pfimo z nitra Slunce
je zanedbatelné oproti po¢tu fotonu vylétajicich z jeho povrchu.

Pfi této predstavé pouzijeme k vypoctu intenzity vyzarovani Stefantiv—
Boltzmannav zakon, ktery fika, Ze vykon P vyzafovany z povrchu S je
imérny ¢étvrté mocniné teploty T

P=c¢-5 T,

kde o = 5,67-1078 W-m~2.K~* je Stefanova-Boltzmannova konstanta.
Kdy# vezmeme v tivahu, ze povrch Slunce je cca 6 - 10'® m? a jeho
teplota cca 5780 K, pak dostaneme

P=0c-S-T*=567-10"%-6-10'®.5780* W = 3,8 - 10%¢ W.

Vykon Slunce je tedy zaokrouhlend 4 - 1026 'W.

Objemovy vykon ziskdAme vydélenim tohoto vysledku objemem zdroje
zafeni. Mohli bychom si myslet, Ze zdrojem je celé Slunce, ale neni tomu
tak. Bézné pouzivany model Slunce fika, ze podminky dovolujici uvol-
fiovani fazni energie, tj. dostateény tlak, teplota a hustota plazmatu
smérem do stFedu Slunce, panuji jen zhruba do 20 % jeho poloméru,
tedy do vzdalenosti 139000 km od stfedu Slunce (polomér Slunce je

Rg = 696 340 km).

P P
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4-10%
3w+ 139000000°

PV,Slunce = W m73 =36 W- m73.

Jde o prumérny vykon reaktoru Slunce, tedy jadra Slunce, na jednotku
objemu. Pfi¢emz ale pobliz centra, kde je hodnota maximalni, je obje-
movy vykon pfiblizné 276 W-m™3, a dale od centra exponencialné klesa.

Po vyletu do vesmiru se ale vratme zpét do kuchyné. Jaky je objemovy
vykon rychlovarné konvice? Pro konvici o pramérném vykonu 2000 W,
které zahtiva objem cca 1,5 litru, dostaneme hodnotu

2000

it .m—3 = .m—3
O70015Wm 1300000 W-m™".

P V,konvice —
Pokud toto ¢islo porovname s primérnym objemovym vykonem reaktoru
Slunce, zjistime, Ze konvice mé objemovy vykon 36 000krat vétsi!

Protoze ¢lovék je také tepelny stroj, mizeme pro ného objemovy vy-
kon vypocitat obdobné. Primérny doporuceny denni pi{jem pro dospé-
lou osobu je cca 9 000 kJ, coz odpovida pfijmu v primeéru 104 J za kazdou
sekundu. Tedy pfikon ¢loveéka je cca 104 W. Pokud vezmeme v Gvahu, ze
nami vybrana osoba ma 80 kg, a pfihlédneme k tomu, ze z velké ¢asti je
¢lovék ,slozen” z vody, pak je jeho objem cca 80 litra a objemovy vykon
¢lovéka nam vyjde

104

T W.-m 3= .m~3
0708Wm 1300 W-m™7,

Py aovex =
coz je sice tisickrat méné nez u konvice, ale skoro ¢tyficetkrat vice nez
v reaktoru Slunce. Nicméné toto ¢&islo je spiSe objemovym piikonem nez
vykonem. Na rozdil od predchozich dvou ,topnych téles”, clovék pomérné
velkou ¢ast svého prikonu ,yyzaii“ ve formé vykonané prace, svého po-
hybu apod., tedy objemovy vykon ¢lovéka bude mensi nez jeho objemovy
prikon.

A7z vam zase nékdo povi, Ze uplné zafite, nepfekvapi vas to. Budete
totiz védet, ze zafite jako pét Slunci (pfepoc¢teno na objem), a to musi
byt prece vidét! Jen to, prosim, nezacnéte dotyénému piepocitavat.
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