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Změna délky dne a derivace funkce

Luděk Spíchal, Česká lesnická akademie, Trutnov

Každý z nás si během roku všímá, že se dny a noci proměňují. Pravi-
delné změny délky dne v průběhu roku bereme jako naprosto samozřej-
mou součást přírodních cyklů. Zatímco v zimě vstáváme často ještě za
tmy a stmívá se brzy odpoledne, v létě si užíváme dlouhé světlé večery.
Na obr. 1 jsou znázorněné časy východů a západů Slunce v průběhu
roku na 50◦ severní šířky a 15◦ východní délky (středoevropský čas,
SEČ) v roce 2025.1)

Obr. 1: Východy a západy Slunce (SEČ) v roce 2025 na 50◦ s. š. a 15◦ v. d.

Délka dne, tedy čas mezi východem a západem Slunce, se během roku
neustále mění. Nejkratší den nastává v době zimního slunovratu (kolem
21. prosince), nejdelší naopak v letním slunovratu (kolem 21. června).
Mezi těmito dvěma body se den zkracuje nebo prodlužuje, rychlost této
změny není ovšem vždy stejná.

Například během jara se den může prodlužovat až o tři a půl minuty
denně, zatímco v období kolem letního slunovratu se mění jen nepatrně.
Tato proměnlivá rychlost změny délky dne je celkem intuitivní. Zatímco

1)Zdroj: https://www.myslivost.cz/Pro-myslivce/Informace-pro-myslivce/

Vychody-a-zapady-Slunce-a-Mesice
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v březnu si prodlužování dne všimneme skoro každým dnem, v červenci
si rozdílu prakticky nevšimneme.

Důvodem existence tohoto jevu typického pro střední zeměpisné šířky
je naklonění zemské osy vůči rovině dráhy kolem Slunce zhruba o 23,5◦.2)

Proto se během roku střídá úhel, pod kterým sluneční paprsky dopadají
na dané místo. Na 50◦ s. š. (přibližná poloha České republiky) trvá nej-
kratší den kolem zimního slunovratu asi 8 h 5 min, zatímco nejdelší den
v období letního slunovratu dosahuje zhruba 16 h 14 min.3) Mezi těmito
extrémy se délka dne vyvíjí relativně hladce a periodicky. Na grafu pak
vypadá téměř jako čistá sinusoida (obr. 2).

Obr. 2: Délka dne (50◦ s. š., 15◦ v. d.)

Zatímco délka dne se mění plynule a poměrně snadno předvídatelně,
rychlost těchto změn se během roku výrazně liší. V blízkosti rovnoden-
ností (kolem 21. března a 23. září) se den prodlužuje nebo zkracuje
nejrychleji. V našich zeměpisných šířkách to znamená až několik minut

2)Naklonění zemské osy (tzv. sklon ekliptiky) má vliv nejen na délku dne, ale i
na střídání ročních období. Tento sklon není neměnný, s velmi dlouhou periodou se
mírně mění (tzv. nutace a precese), což má vliv i na dlouhodobé klimatické změny
(např. Milankovičovy cykly).

3)Zmíněné změny jsou výrazně závislé na zeměpisné šířce. V tropických i polárních
oblastech tak zaznamenáme značně odlišné poměry. V tropických oblastech poblíž
rovníku (zeměpisná šířka 0◦) je délka dne téměř stejná po celý rok – přibližně 12 ho-
din. Ráno slunce vychází kolem 6. hodiny a zapadá okolo 18. hodiny, s jen malými
sezónními výkyvy. V polárních oblastech (nad 66,5◦ severní nebo jižní šířky) dochází
k extrémům – v létě nastává období tzv. polárního dne, kdy Slunce nezapadá vůbec, a
v zimě naopak polární noc, kdy Slunce vůbec nevychází. Například na severu Norska
trvá polární den několik týdnů.
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denně. Naopak v období slunovratů (kolem 21. června a 21. prosince)
se délka dne mění nejpomaleji, zůstává stejná. A právě zde přichází ke
slovu pojem, který je základem nejen matematiky, ale i fyziky, techniky
a přírodních věd obecně – derivace. Zatímco funkce popisuje, jaká je na-
příklad délka dne v určitém okamžiku, derivace nám říká, jak rychle se
tato veličina mění. Jinými slovy řečeno platí, že derivace odpovídá na
otázku „ jak rychle roste nebo klesá“ délka dne [3].

V článku se podíváme na to, jak můžeme pomocí goniometrických
funkcí popsat jak změnu délky dne v průběhu roku, tak rychlost změny
délky dne. V obecné rovině si představíme pojem derivace funkce a uká-
žeme, že funkce popisující rychlost změny délky dne velmi dobře od-
povídá derivaci funkce délky dne. Přitom využijeme reálná data a uká-
žeme, že i něco tak zdánlivě „obyčejného“, jako je střídání dne a noci,
může v sobě ukrývat fascinující matematický rytmus. Pojem derivace
funkce tak nebude jen abstraktním matematickým pojmem, ale velmi
užitečným nástrojem pro porozumění světu kolem nás.

Délka dne a graf funkce sinus

V úvodu jsme zmínili, že graf délky dne v průběhu roku svým tvarem
odpovídá grafu funkce sinus. V této kapitole se pokusíme ukázat, že
křivku délky dne lze skutečně aproximovat pomocí grafu funkce sinus.

Předpokládejme, že hledaná funkce určující délku dne (v hodinách),
kde t je číslo dne v roce (např. t = 1 je 1. leden, t = 172 je 21. červen
apod.), má tvar

L(t) = A+B sin
(
C(t−D)

)
. (1)

Pro jednotlivé parametry rovnice platí, že:

• A je střední délka dne (hod), která představuje aritmetický průměr
délek dnů za celý rok, v modelu je A ≈ 12,26.

• B je amplituda grafu funkce sinus (hod)4), v modelu je

B =
Lmax − Lmin

2
=

16,233− 8,083

2

.
= 4,08.

• C je úhlová frekvence (rad/den), udávající, o kolik radiánů se fá-
zový úhel posune za jediný den, v modelu je C = 2π

365 .

4)Pro výpočet amplitudy byly uvažovány následující hodnoty: nejkratší den – 8 hod
5 min, nejdelší den – 16 hod 14 min.
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• D představuje (fázový) posun tak, aby maximum funkce připadlo
na letní slunovrat (t = 172). Funkce určená rovnicí (1) má maxi-
mum, když

sin

(
2π(t−D)

365

)
= 1 ⇒

⇒ 2π(t−D)

365
=

π

2
⇒ t−D = 91,25 ⇒ D = t− 91,25.

Pokud je t = 172, pak D = 172 − 91,25 = 80,75. Po úpravě a
dosazení do rovnice (1) dostáváme funkci

L(t) ≈ 12,26 + 4,08 sin

(
2π

365
(t− 80,75)

)
. (2)

Na obr. 3 vidíme srovnání grafu skutečných délek dne a grafu funkce (2).
Funkce se blíží skutečným hodnotám, ale není s nimi zcela totožná. Po-
užitá aproximující funkce dobře vystihuje periodickou povahu jevu (stří-
dání délky dne). Velikost odchylky od reálných hodnot je možné kvanti-
fikovat např. pomocí střední kvadratické chyby.5)

Obr. 3: Srovnání skutečných délek dne (50◦ s. š., 15◦ v. d., plná čára) a grafu
funkce (2)

5)Střední kvadratická chyba se označuje také jako root mean square error, ve
zkratce RMSE. RMSE umožňuje měřit, jak daleko se průměrně předpovědi modelu
liší od skutečných hodnot. Menší hodnota RMSE znamená lepší shodu se skutečností.
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V našem případě činí střední kvadratická chyba empirického modelu
cca 0,12 hod, tedy cca 7 min. Výpočet střední kvadratické chyby zna-
mená, že porovnáváme hodnoty modelu s hodnotami skutečnými. Napří-
klad náš model tvrdí, že 100. den v roce trvá cca 13,59 hodiny, i když ve
skutečnosti trval cca 13,48 hodiny. Rozdíl je tedy cca 0,11 hodiny. Takové
rozdíly určíme pro každý den v roce. Každý rozdíl dále umocníme, aby
se nezrušily při následném sčítání kladné a záporné hodnoty (např. −0,3
a +0,3 dávají 0,09). Pokud sečteme všechny tyto čtverce a vydělíme
počtem dní, pak dostaneme průměrnou kvadratickou chybu. Nakonec
z toho vezmeme odmocninu, abychom získali výsledek opět ve stejných
jednotkách jako původní rozdíly (v našem případě v hodinách) [2].

Vedle vlastního modelu délky dne můžeme uvést návrh modelu vy-
tvořený pomocí jazykového modelu ChatGPT (OpenAI), který navrhl
následující funkci

Lm(t) ≈ 12,27 + 3,99 sin
( 2π

365
(t− 81,9)

)
. (3)

Tato funkce vykazuje střední kvadratickou chybu přibližně 6,5 minuty.6)

Změny délky dne a graf funkce kosinus

Již v úvodní části jsme zmiňovali proměnlivou rychlost změny délky
dne v průběhu roku. Na obr. 4 můžeme sledovat změnu délky dne, která
v průběhu roku dosahuje svého maxima v období rovnodenností a mi-
nima v období slunovratu. Kladné hodnoty označují dny, kdy se den
prodlužoval, záporné hodnoty naopak jeho zkracování.

Lomená křivka v grafu byla dále vyhlazena tak, aby bylo možné roční
rytmus změny délky dne lépe pozorovat. Použité gaussovské vyhlazení
funguje tak, že se pro každý den vypočítá průměr z okolních dnů.7) Ne-
jedná se ovšem o běžný aritmetický průměr, nýbrž vážený průměr, kde
největší váhu mají dny nejblíže a čím jsou dny vzdálenější, tím menší
mají vliv. Tento způsob vážení se řídí Gaussovou křivkou, která má zvo-
novitý tvar.8)

6)Modelová funkce byla získána s využitím nástroje ChatGPT (model GPT-4-
turbo, OpenAI) dne 14. června 2025.

7)Carl Friedrich Gauss (1777–1855) byl německý matematik, jehož práce ovlivnila
mnoho oblastí matematiky, statistiky a fyziky. Je po něm pojmenována nejen Gaus-
sova křivka (normální rozdělení), ale i například metoda nejmenších čtverců nebo
Gaussův zákon v elektrostatice.

8)Více o metodě vyhlazení např. https://en.wikipedia.org/wiki/Smoothing,
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Obr. 4: Graf změn délek dne v roce 2025 (50◦ s. š., 15◦ v. d.) a jeho gaussovské
vyhlazení

Vyhlazená křivka tedy neukazuje přesné denní změny, ale jejich ply-
nulý průměr, který pomáhá lépe zachytit celkový rytmus prodlužování
a zkracování dne během roku, kde maximální rychlost změny nastává
kolem jarní a podzimní rovnodennosti a minimum kolem slunovratů.

I v případě grafu rychlosti změny délky dne zaznamenáváme perio-
dické změny odpovídající jisté goniometrické funkce. Současně si mů-
žeme vzhledem ke grafu délek dnů (obr. 3) všimnout určitého fázového
posunu, který odpovídá zhruba 1/4 roku. Pro sestavení modelu tedy v
tomto případě použijeme funkci kosinus, která má maximum posunuté
o π/2, tj. budeme předpokládat funkci ve tvaru

Lz(t) = Az +Bz cos
(
Cz(t−Dz)

)
. (4)

Pro jednotlivé parametry rovnice platí, že:

• Az je střední hodnota změny délky dne (min), představující aritme-
tický průměr změn délek dnů za celý rok, v modelu je Az ≈ −0,01.

• Bz je amplituda grafu funkce kosinus (min), v modelu je Bz = 5.

• Cz = 2π
365 je úhlová frekvence (rad/den).

• Dz představuje posun tak, aby nulová hodnota změny délky dne
připadla na letní slunovrat (t = 172). Funkce určená rovnicí (4)
má nulovou hodnotu, když

https://en.wikipedia.org/wiki/Gaussian_filter?utm_source=chatgpt.com,
https://medium.com/data-science/gaussian-smoothing-in-time-series-data-

c6801f8a4dc3
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cos

(
2π(t−Dz)

365

)
= 0 ⇒

⇒ 2π(t−Dz)

365
=

π

2
⇒ t−Dz = 91,25 ⇒ Dz = t− 91,25.

Pokud je t = 172, pak

Dz = 172− 91,25 = 80,75.

Po úpravě a dosazení do rovnice (4) dostáváme funkci

Lz(t) ≈ −0,01 + 5 cos
( 2π

365
(t− 80,75)

)
. (5)

Nalezená funkce vykazuje střední kvadratickou chybu přibližně 0,51 mi-
nuty (30 vteřin).

Obr. 5: Srovnání grafu délek dne v roce 2025 (50◦ s. š., 15◦ v. d.) a aproximace
pomocí funkce (5)

Model ChatGPT (OpenAI) navrhl následující funkci

Lzm(t) ≈ 0,01 + 4,13 cos
( 2π

365
(t− 82,28)

)
. (6)

Tato funkce podle modelu vykazuje střední kvadratickou chybu přibližně
0,31 minuty (19 vteřin).9)

9)Modelová funkce byla získána s využitím nástroje ChatGPT (model GPT-4-
turbo, OpenAI) dne 18. června 2025.
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Obr. 6: Srovnání grafu délek dne v roce 2025 (50◦ s. š., 15◦ v. d.) a aproximace
pomocí funkce (6)

Změna délky dne a derivace funkce

Pokud nyní shrneme předchozí pozorování, pak můžeme konstatovat,
že délku dne i změnu délky dne lze aproximovat goniometrickou funkcí.
Naším záměrem bude nyní ukázat, že jestliže funkce L(t) (resp. Lm(t))
představuje aproximaci délky dne, pak funkce Lz(t) (resp. Lzm(t)) jako
funkce aproximující změnu délky dne je její derivací.10)

Pojem derivace funkce zde představíme stručně v obecné podobě, se
zaměřením na význam pojmu derivace.11)

V reálném světě se derivace nejčastěji překládá jako okamžitá časová
změna. U jízdy automobilu je derivací jeho dráhy okamžitá rychlost vozu,
derivací jeho rychlosti je zrychlení nebo zpomalení. Sledujeme-li prů-
měrnou denní teplotu, derivace udává tempo oteplování či ochlazování.
U délky dne derivace zase říká, o kolik minut se den právě prodlužuje
či krátí. Přitom jednotky derivace vždy prozradí, co měříme: metry za
sekundu, stupně Celsia za hodinu, minuty za den a podobně.12)

10)Slovo „derivace“ pochází z latinského „derivare“ znamenající „odvádět“ nebo „od-
vozovat“, doslova „vést od něčeho“. Derivace je „odvozená hodnota“, která vychází
z původní funkce. Není tedy něčím, co existuje samo o sobě, ale vzniká z funkce jako
nový údaj, jako její „odvozenina“.
11)Pojem derivace vznikl v 17. století v souvislosti s rozvojem infinitezimálního

počtu. Zakladateli diferenciálního počtu byli nezávisle na sobě Isaac Newton (1643–
1727) a Gottfried Wilhelm Leibniz (1646–1716), přičemž Newton pojem odvozoval
z fyziky (rychlost), zatímco Leibniz rozvíjel spíše formální symboliku. Podobnými
problémy jako Newton a Leibniz se již ve 30. letech 17. století zabýval i P. de Fermat,
který hledal maximální a minimální hodnoty funkcí – tedy případy, kdy je změna
nulová.
12)Znalost okamžité rychlosti změny je cenná i proto, že tam, kde derivace přechází

8 Rozhledy matematicko-fyzikální
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Jestliže budeme nyní sledovat obr. 7, pak průměrnou změnu (např.
průměrnou rychlost) v určitém intervalu (např. mezi body A a B) si
geometricky můžeme představit jako sklon úsečky spojující tyto dva
body (sečna). Pokud bychom rovnici sečny zapsali ve směrnicovém tvaru
y = kx+ q, pak průměrná rychlost je hodnota směrnice k.

Obr. 7: Průměrná a okamžitá (derivace) změna

Budeme-li nyní bod B přibližovat k bodu A tak, že zmenšíme inter-
val na nekonečně malou (infinitezimální) hodnotu, pak se sečna promění
v tečnu, která se křivky dotýká jen v jediném bodě A. Sklon tečny v bodě
A prozrazuje okamžitou změnu (okamžitou rychlost), tedy derivaci. Po-
kud bychom rovnici tečny zapsali ve směrnicovém tvaru y = mx+r, pak
hodnota směrnice tečny m je okamžitá rychlost v bodě A, tedy derivace
funkce v A.13) Derivaci funkce L(t) budeme označovat symbolem L′(t).

z kladné do záporné hodnoty (nebo naopak), dosahuje křivka svého vrcholu či dna.
Tak lze zjistit nejvyšší denní teplotu, maximální tržby podniku nebo nejdelší den
v roce bez nutnosti prohlížet každý bod grafu.
13)K úplnému porozumění a zvládnutí pojmu derivace nestačí jen vědět, že jde

o rychlost změny. Základem je pochopení, co je funkce a jak se její hodnoty mění.
Důležité je umět číst grafy funkcí a rozpoznat, kdy funkce roste nebo klesá. Derivace
funkce je v moderní matematice založena na pojmu limity funkce. Čtenář by měl vě-
dět, co znamená, když „přibližujeme dva body k sobě“, a jak limitní přechod, kdy je
přírůstek vstupu funkce nekonečně malý, vede k okamžité změně. Pro využití derivace
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Pro konkrétní výpočet derivace funkce sinus, která popisuje délku dne,
nebudeme uvádět podrobný matematický postup. Pro přesný výpočet lze
využít řadu volně dostupných nástrojů na internetu.14) Tyto nástroje
umožňují nejen výpočet derivace, ale často také její grafické znázornění
či krokové řešení. Pro derivaci funkce (2) platí

L′(t) ≈ 4,08 · 2π

365
· cos

( 2π

365
(t− 80,75)

)
= 0,07 · cos

( 2π

365
(t− 80,75)

)
,

neboť derivací funkce sinus je funkce kosinus.
Pokud dále amplitudu funkce L′(t) vyjádříme rovněž v minutách, kde

B = 0,07 hod .
= 4,2 min, pak můžeme provést srovnání grafů funkcí

L′(t), Lz(t) a Lzm(t) (obr. 8).

Obr. 8: Srovnání grafů funkcí L′(t), Lz(t) a Lzm(t)

Střední kvadratická chyba mezi funkcemi L′(t) a Lz(t) je přibližně
0,57 minuty, mezi funkcemi L′(t) a Lzm(t) pak přibližně 0,1 minuty.

Funkce pro změnu délky dne Lz(t) i Lzm(t) skutečně odpovídá derivaci
funkce délky dne, od které se liší pouze měřítkem. Je to tedy derivace až
na konstantní násobek a posun, což je přesně to, co bychom čekali při

je třeba zvládnout základní pravidla pro její výpočet, pravidla pro derivace elemen-
tárních funkcí, pravidla pro derivace součtů, součinů či podílů funkcí apod. Čtenář by
současně měl umět použít derivaci při popisu konkrétního jevu (např. změna délky
dne) a interpretovat výsledek, např. kdy je změna nejrychlejší nebo kdy se zastaví.
14)Např. Symbolab: Derivative Calculator

(https://www.symbolab.com/solver/derivative-calculator),
GeoGebra CAS kalkulačka (https://www.geogebra.org/classic/cas),
WolframAlpha (https://www.wolframalpha.com/input/?i=derivative)
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porovnání fyzikální derivace a empirického přepočtu v jiných jednotkách
(hodiny vs. minuty).

Jistě existuje celá řada přírodních cyklů, které mají periodický cha-
rakter a lze je amproximovat pomocí goniometrických funkcí. Z dalších
můžeme zmínit např. změny výšky hladiny moří jako důsledek střídají-
cího se přílivu a odlivu, změnu délky stínu v závislosti na poloze Slunce,
změnu teploty půdy v průběhu roku, fáze Měsíce apod [1, 4].15)

Čtenář si může ověřit úvahy zmíněné v článku na následující úloze
týkající se změny teploty vzduchu v průběhu roku (poznámky k řešení
jsou v Příloze A).

Problém. V tab. 1 je uveden normál průměrných měsíčních teplot
v Trutnově.16) Na obr. 9 je graf teplot z tab. 1 a dále graf meziměsíčních
změn teplot.

Měsíc Leden Únor Březen Duben Květen Červen
Normál −2,9 −0,9 2,0 7,2 12,0 15,8

Měsíc Červenec Srpen Září Říjen Listopad Prosinec
Normál 16,8 16,3 12,3 7,7 2,7 −1,1

Tab. 1: Normál průměrných měsíčních teplot v Trutnově

1. Určete předpisy funkcí aproximujících graf průměrných měsíčních tep-
lot a graf meziměsíčních změn teplot vzduchu v Trutnově.

2. Porovnejte (pomocí grafu) nalezené aproximující funkce s grafem prů-
měrných měsíčních teplot a grafem meziměsíčních změn teplot vzdu-
chu.

3. Určete střední kvadratickou chybu (RMSE) pro modely průměrných
měsíčních teplot i meziměsíčních změn teploty vzduchu.

4. Derivaci funkce průměrných měsíčních teplot srovnejte s funkcí me-
ziměsíčních změn teplot.

5. Vyzkoušejte AI pro vytvoření modelových funkcí a určení RMSE. Po-
rovnejte tyto modely s empirickými modely z bodu 1.

15)Periodické jevy jako příliv a odliv popisoval už v 17. století Galileo Galilei (1564–
1642). Jeho pozorování měsíčních fází, pohybu planet i mořských jevů vedla k hlub-
šímu chápání rytmů v přírodě.
16)Normál teploty vzduchu je průměrná hodnota teploty, která je vypočtena z dlou-

hodobého sledování počasí. Typicky se počítá za období 30 let podle metodiky Světové
meteorologické organizace (WMO).
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Obr. 9: Graf průměrných měsíčních teplot vzduchu a meziměsíčních změn tep-
lot vzduchu v Trutnově

Závěr

Obsah článku o změně délky dne jako modelu periodického přírodního
jevu nabízí příležitost propojit výuku goniometrických funkcí s reálným
světem. Funkce sinus a kosinus tak nejsou jen abstraktní matematické
objekty, ale naopak velmi užitečné nástroje k popisu pravidelně se opa-
kujících jevů v přírodě. Konkrétně bylo ukázáno, jak parametry těchto
funkcí – amplituda, perioda, fázový posun a vertikální posun – odpoví-
dají skutečným charakteristikám délky dne během roku.

V článku jsme využili i možnosti, které nabízí umělá inteligence (AI).
Modely, které jsme takto získali, poskytly přesnější přizpůsobení mo-
delů reálným datům než ručně získané modely. Jedním ze zásadních
důvodů, proč model navržený pomocí AI (např. ChatGPT) vykazuje
nižší střední kvadratickou chybu než ručně odvozená funkce, je použití
numerické optimalizace. AI model hledá takové parametry funkce (napří-
klad střední hodnotu, amplitudu, frekvenci a fázový posun), které vedou
k co nejmenší chybě mezi modelem a reálnými daty. Tento přístup je
výpočetně náročnější, ale umožňuje přesnější přizpůsobení modelu kon-
krétnímu datovému souboru.

Zatímco ručně odvozená funkce se často snaží přesně vystihnout kon-
krétní klíčový bod (například délku dne při letním slunovratu), AI mo-
del bere v úvahu chybu napříč celým rokem a snaží se ji rovnoměrně
minimalizovat. Výsledkem bývá model, který nemusí perfektně odpoví-

12 Rozhledy matematicko-fyzikální
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dat fyzikální interpretaci (např. maximálně přesný den slunovratu), ale
poskytuje menší celkovou odchylku.
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Příloha
Předpokládejme, že funkce aproximující průměrné teploty vzduchu má
tvar odpovídající rovnici (1). Podle tab. 1 platí, že A

.
= 7,51 a B

.
= 9,85.

Úhlová frekvence funkce odpovídá počtu měsíců v roce, tj. C = 2π/12 =
= π/6. K odhadu fázového posunu D uvážíme fakt, že maximum teploty
nastává v červenci (t = 7). Funkce určená rovnicí (1) má maximum, když

sin

(
π(t−D)

6

)
= 1 ⇒ π(t−D)

6
=

π

2
⇒ t−D = 3 ⇒ D = t− 3.

Pokud je maximum teploty v t = 7, pak D = 7− 3 = 4. Po dosazení do
rovnice (1) platí, že funkce aproximující průměrné teploty vzduchu má
tvar (obr. 10 vlevo)

L(t) = 7,51 + 9,85 sin
(π
6
(t− 4)

)
. (7)

Předpokládejme, že funkce aproximující meziměsíční změny teploty
vzduchu má tvar odpovídající rovnici (4).

Podle tab. 2 platí, že Az = 0 a Bz
.
= 5,1. Úhlová frekvence funkce

odpovídá počtu měsíců v roce, tj. Cz = 2π/12 = π/6.
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Měsíc Leden Únor Březen Duben Květen Červen
Změna teploty −1,8 2,0 2,9 5,2 4,8 3,8

Měsíc Červenec Srpen Září Říjen Listopad Prosinec
Změna teploty 1,0 −0,5 −4,0 −4,6 −5,0 −3,8

Tab. 2: Meziměsíční změny teploty vzduchu

K odhadu fázového posunu Dz uvážíme fakt, že maximální změna
teploty vzduchu nastává v dubnu (t = 4). Funkce určená rovnicí (4) má
maximum, když

cos

(
π(t−Dz)

6

)
= 1 ⇒ π(t−Dz)

6
= 0 ⇒ t−Dz = 0 ⇒ Dz = t.

Pokud maximální změna teploty nastává v t = 4, pak Dz = 4, a funkce
aproximující průměrné teploty vzduchu má tvar (obr. 10, vpravo)

Lz(t) = 5,1 cos
(π
6
(t− 4)

)
. (8)

Obr. 10: Porovnání reálných dat s modelovými funkcemi pro průměrné měsíční
teploty vzduchu (vlevo), meziměsíční změny teplot vzduchu (vpravo)

Střední kvadratická chyba pro model průměrných měsíčních teplot
určený rovnicí (7) je cca 0,7 ◦C, střední kvadratická chyba pro model
meziměsíčních změn teploty vzduchu určený rovnicí (8) je cca 1,12 ◦C.
Pro derivaci funkce teploty vzduchu platí

L′(t) ≈ 9,85 · π
6
· cos

(π
6
(t− 4)

)
.
= 5,15 · cos

(π
6
(t− 4)

)
.

Srovnání funkcí L′(t) a Lz(t) ukazuje malý rozdíl v amplitudě, střední
kvadratická chyba činí cca 0,04 ◦C.
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Číselná charakteristika podobných trojúhelníků

Vlastimil Dlab, Bzí u Železného Brodu

Článek [2] poukázal na důležitost pojmu podobnost trojúhelníků při
studiu rovinné geometrie. Přitom znovu podtrhl roli komplexních čísel,
zdůrazněnou už v učebnici [1]. V tomto článku popíšeme bijekci svazující
podobné trojúhelníky a komplexní čísla.

Stejně jako v [2] je náš modus operandi komplexní Gaussova rovina1)

opatřená pravoúhlými souřadnicemi, takže její body D,V,W,H,Z, . . .
budeme identifikovat s komplexními čísly d, v, w, h, z, . . . Množinu kom-
plexních čísel budeme značit písmenem C. Trojúhelníky identifikujeme
s trojicemi komplexních čísel, které neleží na téže přímce.

Pro porozumění tomuto článku jsou potřeba základní znalosti kom-
plexních čísel: reálná část Re(z) a imaginární část Im(z) komplexního
čísla z, absolutní hodnota |z|, komplexně sdružené číslo z, argument
komplexního čísla, sčítání, odčítání, násobení a dělení komplexních čísel.
Je třeba rozumět tomu, že násobení komplexním číslem odpovídá rotaci
kolem počátku.

Omezíme se na orientované trojice bodů: Trojúhelníky ABC (tj. abc)
a UVW (tj. uvw) jsou podobné, jestliže délky jejich stran AB,BC a
CA (tj. absolutní hodnoty |a− b|, |b− c| a |c− a|) jsou, pro jisté kladné
(reálné) číslo t, t-násobky délek stran UV , VW a WU (tj. |u−v|, |v−w|
a |w − u|). Budeme v tomto případě mluvit o „přímé“ či „orientované“
podobnosti a značit ji symbolem ∼: abc ∼ uvw.

Jádrem důkazu hlavní věty v článku [2] bylo následující lemma, které
je v tomto článku naším výchozím tvrzením.

Lemma. Trojúhelníky Z1Z2Z3, tj. z1z2z3, a W1W2W3, tj. w1w2w3, jsou
přímo podobné právě tehdy, když

w3 − w1

w2 − w1
=

z3 − z1
z2 − z1

. (1)

Podáme dva důkazy tohoto tvrzení, abychom blíže osvětlili bezpro-
střední vztah mezi elementární rovinnou geometrií a strukturou kom-
plexních čísel.

1)V cizojazyčné literatuře častěji nazývána Argandova či Argandova–Gaussova ro-
vina.
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Prvním důkazem oslovíme čtenáře, kteří se seznamují se strukturou
komplexních čísel. Důkaz využívá pojmy translace (posunutí) a rotace
(otočení) komplexní roviny a je prezentován ve formě tohoto objasňují-
cího tvrzení: Pro každou uspořádanou trojici z1z2z3 existuje právě jedna
trojice tvaru 01u splňující z1z2z3 ∼ 01u. Navíc, jestliže je z1z2z3 kladně
orientována2), potom Im(u) > 0.

Aplikací t(z) = z − z1 dostáváme z1z2z3 ∼ 0z′2z
′

3, kde z′2 = z2 − z1
a z′3 = z3 − z1. Poté aplikace r(z) = (z′2)

−1z vede ke 0z′2z
′

3 ∼ 01u
s u = (z′2)

−1z′3. Tedy z1z2z3 ∼ 01u. Navíc, je-li trojúhelník z1z2z3 kladně
orientován, je kladně orientován též 01u a tedy u leží v horní polorovině.
Z těchto výpočtů vyplývá, že

u =
z3 − z1
z2 − z1

(2)

a že tedy 01u je taková trojice jediná.
Druhý důkaz je stručná sbírka jednoduchých faktů, které čtenáři obe-

známení se strukturou komplexních čísel shledají zcela elementární a
evidentní. Absolutní hodnota poměru (1)

∣∣∣z3 − z1
z2 − z1

∣∣∣ = |z3 − z1|
|z2 − z1|

vyjadřuje poměr délek dvou stran trojúhelníku a argument podílu (2)
úhel α mezi těmito dvěma stranami. Tuto situaci jasně vyjadřuje obr. 1.
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w3 − w1

w2 − w1
=

z3 − z1
z2 − z1

= u

w1

w2

w3
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z2

z3

0
1

u

Obr. 1: Trojúhelníky z1z2z3, w1w2w3 a 01u jsou podobné

2)Připomeňme, že trojice bodů z1, z2, z3 je kladně orientována, pokud se na kruž-
nici opsané těmto bodům dostaneme pohybem proti směru ručiček hodin ze z1 nejprve
do z2 a poté do z3.
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Důkaz je tedy založen na jednoduché myšlence vybrat ze souboru
všech přímo podobných trojúhelníků takový, jehož jedna strana má (zvo-
lenou) délku 1. Takové volby jsou obecně možné tři, jak ukazuje obr. 2.
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Obr. 2: Podobné trojúhelníky 01u, 01u−1

u
a 01 1

1−u

Obr. 2 dokazuje bezprostředně následující tvrzení.
Věta. Množina všech komplexních čísel z ∈ C splňujících Im(z) > 0 (tj.
čísel ležících v Gaussově rovině nad reálnou osou) připouští rozklad na
vzájemně disjunktní trojice čísel

Du =

{
u,

1

1− u
,
u− 1

u

}
. (3)

Tyto trojice jsou v jednoznačné korespondenci s třídami přímo podobných
trojúhelníků. Pouze jedna z těchto trojic degeneruje na jedno číslo

u =
1

2
+

√
3

2
i

a odpovídá množině orientovaných rovnostranných trojúhelníků.
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Zde si neodpustíme malou poznámku týkající se imaginární části čísel
v trojici (3). Jakmile jedno z těchto čísel má tuto část kladnou, mají ji
kladnou (jak jsme už zaznamenali) i zbylá dvě čísla. Čtenáři, kteří mají
v oblibě početní argument se mohou přesvědčit, že tvar čísla u = r+ s i,
r ∈ R, s ∈ R, s > 0, vede k zápisu

1

1− u
=

1− r

(1− r)2 + s2
+

s

(1− r)2 + s2
i,

u− 1

u
=

r(r − 1) + s2

r2 + s2
+

s

r2 + s2
i,

a tedy Im
(

1
1−u

)
> 0 a Im

(
u−1
u

)
> 0.

Každý čtenář se jistě nyní rád přesvědčí, že třídám rovnoramenných
trojúhelníků odpovídá trojice

D =

{
1

2
+

t

2
i,

2

t2 + 1
+

2t

t2 + 1
i,

t2 − 1

t2 + 1
+

2t

t2 + 1
i

}
, t > 0,

a třídám pravoúhlých trojúhelníků odpovídají trojice

D =

{
t i,

1

t2 + 1
+

t

t2 + 1
i, 1 +

1

t
i

}
, t > 0.

Pravoúhlé trojúhelníky jsou tedy charakterizovány faktem, že přiřazená
trojice čísel obsahuje číslo ryze imaginární. Speciálně,

D =

{
i, 1 + i,

1

2
+

1

2
i

}

popisuje pravoúhlý rovnoramenný trojúhelník.

Poznámka. Shora uvedenou větu můžeme snadno modifikovat na případ
všech (tj. neorientovaných) podobných trojúhelníků užitím komplexně
sdružených čísel: Množina všech komplexních čísel z ∈ C splňujících
Im(z) ̸= 0 (tj. čísel ležících v Gaussově rovině mimo reálnou osu) při-
pouští rozklad na vzájemně disjunktní šestice čísel

Du =

{
u, ū,

1

1− u
,

1

1− ū
,
u− 1

u
,
ū− 1

ū

}
.
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Tyto šestice jsou v jednoznačné korespondenci s třídami všech podobných
trojúhelníků. Pouze jedna z těchto šestic degeneruje na dvojici čísel

{
1

2
+

√
3

2
i,

1

2
−

√
3

2
i

}

a odpovídá množině všech rovnostranných trojúhelníků.

Poznámka. „Normování“ podobných trojúhelníků do polohy, kdy je
jedna ze stran identifikována s intervalem [0, 1] je pouze naší (vhodnou)
volbou. Volba intervalu [−1, 0] definuje stejným způsobem třídy

{
u, −1 + u

u
, − 1

1 + u

}
.

Poněkud jiný rozklad dostáváme volbou intervalu [− 1
2 ,

1
2 ]. Tato volba

vede k rozkladu komplexních čísel s kladnou imaginární částí na třídy
{
u,

3 + 2u

2− 4u
,
2u− 3

4u+ 2

}
.

V tomto případě je {√
3

2
i

}

třídou, která degenerovala na jedno číslo (a odpovídá množině oriento-
vaných rovnostranných trojúhelníků).

Nezbývá než uvést shora uvedenou větu ve zcela obecném tvaru, kdy
zvoleným intervalem je interval [a, b], kde a ̸= b, a ∈ C, b ∈ C.

Obecná věta. Množina všech komplexních čísel z ∈ C ležících v poloro-
vině Gaussovy roviny definované přímkou určenou čísly a a b připouští
rozklad na vzájemně disjunktní trojice čísel

D̂u =

{
u, a+

(b− a)2

b− u
, b+

(b− a)2

a− u

}
.

Tyto trojice jsou v jednoznačné korespondenci s třídami přímo podobných
trojúhelníků. Pouze jedna z těchto trojic degeneruje na jedno číslo

u =
a(1−

√
3 i) + b(1 +

√
3 i)

2

a odpovídá množině orientovaných rovnostranných trojúhelníků.
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Pokud bychom chtěli popsat šestice komplexních čísel odpovídající
množině všech (tj. neorientovaných) podobných trojúhelníků, využili
bychom následující lemma, jehož důkaz ponecháme čtenáři.

Lemma. Zrcadlový obraz komplexního čísla u podle přímky určené kom-
plexními čísly a a b je číslo

a+
(ū− ā)(b− a)

b− ā
.

Poznámka. V této závěrečné poznámce poukážeme na souvislost výše
popsaného rozkladu komplexních čísel se skládáním příslušných kom-
plexních funkcí. Zvolme dvě různá komplexní čísla a a b a označme
pomocí Ca,b množinu všech komplexních čísel, která neleží na přímce
definované čísly a a b. Kromě identické funkce f1, f1(z) = z, definujme
na Ca,b funkce f2 a f3:

f2(z) = a+
(b− a)2

b− z
a f3(z) = b+

(b− a)2

a− z
.

Na množině G = {f1, f2, f3} definujeme „násobení“ × pomocí sklá-
dání funkcí (fs × ft)(z) = fs(ft(z)). Násobení je tedy dáno tabulkou

× f1 f2 f3

f1 f1 f2 f3

f2 f2 f3 f1

f3 f3 f1 f2

V terminologii abstraktní algebry je (G,×) cyklickou grupou řádu 3.

Závěr článku patří dvěma úlohami čtenáři.

1. Ukažte, že volba a = −1 a b = 1 definuje bijekci mezi rozkladem
poloroviny komplexních čísel na tříprvkové třídy

{
u,

3 + u

1− u
,
−3 + u

1 + u

}

a množinami orientovaných podobných trojúhelníků s výjimkou jed-
nočlenné třídy popisující množinu všech orientovaných rovnostranných
trojúhelníků. Určete toto komplexní číslo.
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2. Dokažte, že rozklad poloroviny komplexních čísel na trojice čísel
{
u,

1

u− i
,
1 + u i

u

}

definuje bijekci s množinami všech orientovaných rovnostranných trojú-
helníků s výjimkou degenerované jednoprvkové třídy

{−
√
3 + i

2

}
.
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Anděl na útěku

Jan Jekl, Univerzita obrany, Brno

Abstrakt. V tomto článku se zabýváme hrou dvou hráčů na nekonečné ša-
chovnici. Jeden z hráčů (ďábel) odebírá pole a snaží se soupeře polapit, zatímco
druhý hráč (anděl) se pohybuje dle předepsaných pravidel a snaží se do neko-
nečna unikat. Je známo, že anděl dokáže unikat, je-li jeho předem stanovená
rychlost dostatečná, a je naopak chycen, když je jeho rychlost příliš malá.

Úvod

Hry a hlavolamy inspirovaly matematiky od nepaměti. Již před na-
ším letopočtem se Archimedes ptal, kolika způsoby lze složit 14 jistých
dílků, aby vytvořily čtverec, viz Ostomachion [9]. V roce 1982 tak sepsali
Berlekamp, Conway, a Guy dvousvazkovou knihu popisující různé ma-
tematické hry Winning Ways for your Mathematical Plays. V roce 2004
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vyšlo druhé vydání knihy rozdělené do čtyř svazků čítajících dohromady
1000 stran.

Ve druhém svazku z roku 1982 [1] (ve třetím svazku druhého vydání)
je zmíněna následující úloha. Představme si, že máme nekonečnou ša-
chovnici, po které se pohybuje anděl. Anděl se pohybuje podobně jako
král na šachovnici s jediným rozdílem, že anděl může provést ve svém
tahu až k tahů krále, kde k je pevně zvolené číslo, viz obr. 1. Ďábel
se snaží polapit anděla tak, že postupně odstraňuje čtverce ze šachov-
nice, aby na ně anděl nemohl znovu vstoupit. Přitom se dokola střídají
v tazích, kdy anděl vždy učiní svůj pohyb a ďábel odstraní jedno pole.
Anděl může ve svém pohybu přeskakovat i odstraněná políčka, ale ne-
může na nich skončit. Ďábel vyhraje, pokud je anděl uvězněn v pasti, ze
které nemůže uniknout. Anděl vyhraje, pokud jej ďábel nikdy nepolapí,
tj. pokud dokáže donekonečna unikat. Pro usnadnění budeme používat
značení andělk, kde se jedná o anděla se silou k.

k = 2

Obr. 1: Vyznačená pole, kam se může přesunout anděl2

Otázka, která zajímala autory knihy [1], je jednoduchá. Polapí ďá-
bel andělak? Dokáže andělk unikat navždy, aniž by byl polapen? Hraje
volba k nějakou roli? Část odpovědí na tuto otázku poskytli již samotní
autoři knihy [1]. Protože však ani po patnácti letech otázku nikdo uspo-
kojivě nezodpověděl, vypsal J. H. Conway finanční odměnu za nalezení
odpovědi na zbývající otázky [3]. V závislosti na získané odpovědi a po
přepočtení nabízené částky na dnešní peníze by si tak úspěšný řešitel
mohl připsat na účet až 40 tisíc korun.

Kompletní odpověď na uvedené otázky byla získána až v roce 2007.
Dnes tedy již víme, že je-li k = 1, pak ďábel dokáže polapit anděla.
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Je-li k alespoň 2, pak anděl dokáže unikat donekonečna. V tomto článku
popíšeme řešení pro k = 1 a pro k ≥ 11, kde vycházíme primárně z článků
[3], [8] a knihy [1]. V případě nejasností doporučujeme čtenáři tyto texty
také prozkoumat. Zmiňme také, že není známo, zda byla finanční odměna
nakonec vyplacena [12].

Obr. 2: Anděl1 na tahu. Nachází-li se před andělem1 tři odebraná pole (červená
barva), pak se již anděl1 nikdy za tuto hranici nedostane

Zmiňme nakonec, že není zcela jasné, kdo samotnou hru vymyslel.
Silverman je dle článku [4] vynálezcem her, kde se na šachovnici pohybuje
šachová figura a protivník odebírá pole. V knize [1] připisují autorství
zde popsané verze hry panu Epsteinovi [11]. Nicméně pan Silverman zde
uvedenou hru i s jejími obecnými pravidly uvádí také ve své knize [10]
z roku 1971, tj. jedenáct let před vydáním knihy [1].

Polapení anděla pro k = 1

První ze všeho učiňme několik pozorování. Pokud bude ďábel odebírat
pole vždy v blízkosti anděla1, pak dokáže anděl1 unikat. Proto aby byl
anděl1 chycen, tak musí ďábel nachystat „past“ , do které se anděl1 chytí.

Rozmysleme si také, že tři odebraná pole přímo před andělem1 tvoří
pro anděla1 nepřekonatelnou hranici, viz obr. 2. Posune-li se anděl1 do-
prava, pak ďábel odstraní další pole v řadě napravo. Naopak posune-li
se anděl1 doleva, pak ďábel odstraní další pole v řadě nalevo.

Vítězná strategie vedoucí k uvěznění anděla spočívá v tom, že lze tako-
vouto bariéru blížícímu se andělovi předem nachystat. Předpokládejme,
že anděl se pohybuje jedním směrem a ďábel ho chce zastavit. Ďáblovi
stačí odebrat pole v páté řadě přímo před andělem, viz obr. 3 a), a volit
správně následující kroky. Anděl se nyní může posunout dopředu 3 b)
nebo do strany 3 c). Vzhledem k symetrii situace stačí studovat pouze
posun do jedné ze stran a posun do druhé strany dopadne analogicky.

Rozebereme nejprve variantu 3 b), kdy se anděl1 posune dopředu na
pole B, obr. 4. Ďáběl reaguje odebráním pole na jedné straně B’. Vydá-li
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se anděl1 ve směru odebraného pole B’, pak ďábel reaguje postupným
odebíráním polí ve stejném směru, obr. 4 a). Pokud by se anděl1 posunul
z pole B znovu dopředu na pole C, obr. 4 b), pak stačí odebrat pole C’
na druhé straně a anděl1 je již v pasti. Anděl1 se tedy musí posunout
v opačném směru od odebraného pole B’, obr. 4 c) a nyní ďábel přeskočí
jedno pole a odebere C’. Nyní je již anděl1 také v pasti.

Obr. 3: a) Anděl1 se přiblížil k pomyslné hranici, kterou chce ďábel vybudovat,
a ďábel odebere čtverec pět polí před andělem1, aby jej zastavil. Anděl1 je na
tahu a může se posunout vpřed b), nebo do strany c)

Obr. 4: Tahy anděla1 jsou vyznačeny tiskacími písmeny. Odpovědi ďábla jsou
doplněny o apostrof. Jedná se o rozbor možných tahů, kdy anděl táhne prvním
tahem vpřed, viz 3 b).

Posune-li se anděl1 z pole C doleva nebo dopředu, ďábel odebere vy-
nechané pole D’, obrázek 4 d). Posune-li se anděl z pole C dále doprava,
obr. 4 e), pak pokračujeme odebíráním polí napravo od C’, kde vyne-
chané pole E2’ odebíráme, jenom kdyby se anděl pokusil proklouznout
tahem doleva E2. Pečlivým rozebráním situace vidíme, že anděl1 je již
v pasti.

Nyní se podívejme na druhou variantu 3 c), kde se anděl1 posune
do strany na pole B. Na tento tah je potřeba reagovat vynecháním jed-
noho pole a odebráním dalšího pole ve směru andělova1 pohybu, obr. 5 a).
Pokud se nyní posune anděl1 z pole B dopředu na pole C2, pak odebí-
ráme vynechané místo, obr. 5 b), a podobně postupujeme, pokud se
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anděl1 z pole B posune doleva na C1. Pokud se anděl1 posune z pole
B dále doprava na pole C, obr. 5 c), pak odebíráme pole napravo C’.
Vynechané místo D1’ odebíráme, jenom kdyby se anděl1 pokusil pro-
klouznout tahem vpřed na D2 nebo doleva na D1. V případě, že anděl
pokračuje pohybem na D3, odebíráme další pole D3’ v řadě. Ve všech
těchto případech je anděl1 již prakticky zablokován a nemůže překročit
ďáblem vytyčenou hranici.

Uvedenými kroky může ďábel uvěznit anděla1 v jedné polorovině.
Je ale jasné, že v tomto případě není anděl chycen, protože stále může
nekonečně unikat do strany. Past na anděla1 však kompletně sklapne,
bude-li anděl1 uvězněn v ohraničené oblasti. Aby bylo možné anděla1

uvěznit, je potřeba si „oblast“ předem nachystat. Ďábel nejprve odebírá
rohová pole ve tvaru písmene L, v dostatečně velkém čtverci tak, jak je
vyznačeno na obr. 6. V rozích odebrané pole zajistí, že anděl nebude
moci do nekonečně unikat podél přímky.

Obr. 5: Tahy anděla1 jsou vyznačeny tiskacími písmeny. Odpovědi ďábla jsou
doplněny o apostrof. Jedná se o rozbor možných tahů, kdy anděl táhne prvním
tahem do strany, viz 3 c)

Chystaný čtverec musí být dostatečně velký, aby z něj anděl neunikl
než budou rohová pole odebrána. K odebrání rohů stačí ďáblovi pouze 36
tahů (9 tahů na vytvoření hranice ve tvaru L v každém rohu), tj. čtverec
by měl být dostatečně velký, aby se z něj anděl1 za 36 tahů nedostal
(a nechceme ani, aby se v této době dostal do vznikajících pásů). Tedy
počáteční čtverec musí mít stranu délky alespoň 83 polí, tj. 36 v každém
směru od anděla. Na stranách čtverce tak vzniknou pásy, do kterých
když anděl1 vstoupí, tak ďábel začne vyplňovat čárkovanou hranici dle
výše uvedeného postupu, aby anděl1 z oblasti neunikl.

Předem odebrané rohy zajistí, že anděl1 nebude moci unikat do strany
věčně, ale dříve nebo později narazí na odebraná pole. Překročí-li anděl1
z jednoho pásu do druhého, začne ďábel odebírat pole z čárkované hra-
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nice nového pásu. Díky předem odebraným rohovým polím jsou na sobě
pásy nezávislé a nemůže se tak stát, že by ďábel musel vyplňovat dvě
úsečky najednou.

Obr. 6: Předchystaná oblast, kde dojde k uvěznění anděla1, musí být dosta-
tečně velká, aby ďábel dokázal odebrat vždy 9 polí v každém rohu ve tvaru
písmene L, viz černá čára reprezentující odebrané pole. Po tuto dobu se anděl1
nesmí dostat do vznikajících pásů. Jakmile anděl1 vstoupí do pásů, začne ďá-
bel odebírat pole na čárkované čáře, aby jej zastavil

Výhoda strategie spočívá také v tom, že pokud by ďábel udělal chybu,
pak lze začít znovu od začátku s novou oblastí. Uveďme nakonec, že zde
uvedená strategie vychází z textu [6]. Elwyn R. Berlekamp je dle [4]
autorem složitější strategie, kterou lze nalézt v knize [1]. Zde je ukázáno,
že k uvěznění anděla stačí čtverec o straně délky 33 políček.

Únik anděla není jednoduchý ani pro k ≥ 2

V předchozí části jsme viděli, že anděla1 lze polapit. Jak jsme již
uvedli, dnes již víme, že pro k ≥ 2 dokáže andělk unikat navždy. Přitom
musí být opatrný a volit správnou strategii, neboť pokud by se pohy-
boval příliš jednoduše, bude uvězněn, jak ukázal Conway [3]. Abychom
ukázali, že tomu tak skutečně je, uvažujme andělak, který se pohybuje
v každém tahu alespoň o jedno pole doprava a nikdy se nevrací doleva,
viz obr. 7. Předpokládejme také, že je andělk uvězněn, pokud se již nemá
kam přesunout. V následující části uvažujme pro přehlednost anděla4.
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Protože se anděl4 pohybuje pouze jedním směrem, pak ďábel ví, kde
je potřeba nachystat past. Předpokládejme, že se pokusíme vybudovat
nepropustnou bariéru ve vzdálenosti h = 2260 ≈ 1,8·1078 polí napravo od
anděla4. Protože se anděl4 musí každým tahem posunout doprava, stačí
k zastavení anděla4 dostatečně široká bariéra (o šířce 4), aby ji anděl4
nemohl přeskočit. Anděl4 dorazí do vzdálenosti h nejdříve za h

4 = 2258

tahů, pokud se bude posunovat v každém kroku o 4 pole doprava, tj.
co nejrychleji doprava. A naopak nejpozději za h = 2260 tahů, pokud
se bude pohybovat doprava vždy pouze o jedno pole, tj. co nejpomaleji
doprava.

k = 4

Obr. 7: Pohyb anděla4 směřujícího vždy alespoň o jedno pole doprava

Nevíme, jaký postup anděl4 zvolí, a proto je potřeba se dopředu
připravit na všechny varianty. Protože se anděl4 může posunovat ve
směru nahoru nebo dolů maximálně h-krát a v každém tahu se po-
sune o maximálně 4 pole, pak chystaná bariéra musí mít délku alespoň
2hk = 8h = 2263 polí. Zde se zohlednilo, že anděl4 může směřovat nahoru
i dolů. Protože dokonalou neprostupnou bariéru ve vzdálenosti h nelze
připravit (ďábel odebírá pole mnohem pomaleji, než se anděl pohybuje),
tak si popíšeme, jak lze sestrojit alespoň bariéru postačující k uvěznění
anděla4. Předpokládejme nejprve, že budujeme bariéru o šířce 1. Později
uvidíme, že stejný postup lze aplikovat 4-krát, aby byla bariéra dosta-
tečně široká.

Rozmysleme si, že čím více se anděl4 blíží k hranici, tím přesněji víme,
kam směřuje, a k jeho zastavení stačí kratší bariéra, viz obr. 8. Jakmile
anděl4 urazí polovinu vzdálenosti h = 2260, tj. vzdálenost 2259, tak nově
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stačí postavit bariéru zhruba poloviční délky, viz obr. 8. Vždyť původní
délka bariéry 2263 = 8h bude nově také poloviční 8h

2 = 4h = 2262.

Obr. 8: Po několika tazích lze zmenšit chystanou bariéru, neboť známe andělův
cíl přesněji

Označme pro následující kroky hodnotu M = 26 a uvažujme, že
• Anděl4 urazí polovinu vzdálenosti h, tj. vzdálenost 2259, za 2257

tahů, pokud bude spěchat co nejvíce doprava, a za 2259 tahů, bude-
li se posouvat co nejméně doprava. Za tuto dobu dokáže ďábel
určitě odebrat jedno pole z každých M = 26 polí bariéry o původní
délce 2263. Vskutku, k tomu mu stačí pouze 2263

M
= 2263

26 = 2257

tahů.

• Nově andělovi4 zbývá urazit již jenom druhou polovinu vzdálenosti
h, tj. vzdálenost 2259 a ďáblovi naopak stačí se nově soustředit
pouze na bariéru délky 2262, neboť již přesněji ví, kam anděl4 smě-
řuje. Polovinu zbývající vzdálenosti 2259, tj. vzdálenost 2258 anděl4
urazí za 2256 tahů, pokud bude spěchat co nejvíce doprava, a za
2258 tahů, bude-li se posouvat co nejméně doprava. Za tuto dobu
dokáže ďábel z každých M = 26 polí zbývající části bariéry jedno
pole odebrat. Vskutku, k tomu mu stačí pouze 2258

M
= 2258

26 = 2256

tahů.

• Po dvou krocích již andělovi4 zbývá urazit pouze vzdálenost 2258 a
ďáblovi se stačí soustředit na bariéru délky 2261. I ve třetím kroku
by se ďáblovi podařilo odebrat vždy jedno z M polí zbývající části
bariéry.

• Ďábel postupuje stejným způsobem pořád dokola. Zatímco anděl4
urazí polovinu zbývající vzdálenosti, tak má ďábel dostatek času
odebrat vždy 1 z M polí ve tvořící se bariéře. Důležité je, že počá-
teční vzdálenost je dostatečně velká, aby bylo možné ji opakovaně
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půlit. Dále je důležité, že se délka bariéry zmenšuje stejně rychle
jako délka vzdálenosti.

• Po M opakováních tohoto postupu již bude stát ve vzdálenosti
2260

226
= 2260

264 = 2196 před andělem4 úsečka o šířce 1 a délce 2263

226
=

= 2263

264 = 2199. Po 4M = 28 opakováních již bude mít bariéra před
andělem požadovanou šířku 4.

• Úspěch ďábla spočívá v tom, že si může volit dostatečně velkou
počáteční vzdálenost h = 2260. Aby postup fungoval pro k = 4 a
M = 26, pak musí být h = 2α, kde α > 256.

Lze si rozmyslet, že pro obecné k stačí volit M = 4k2 a α > 4k3. Důkaz
tohoto tvrzení přenecháváme čtenáři za úkol. Rozmysleme si také, že
bariéra by měla být o něco větší než 2hk, aby ji anděl v posledním tahu
nedokázal obejít. Odebrání krajních polí lze však zajistit zvětšením M
a h.

Poznamenejme nakonec, že Conway [3] nazývá andělak směřujícího
v jednom směru hlupákem.

Anděl unikne, je-li k ≥ 11

Dnes již víme, že andělk dokáže unikat, je-li k ≥ 2. Dvě nezávislá
řešení této úlohy byla publikována v roce 2007, a to v článcích [8] a
[5]. Přitom autoři o svých výsledcích patrně věděli, neboť se vzájemně
ve svých článcích zmiňují. V tomto textu se zaměříme na jednodušší
důkaz, který A. Máthé také uvádí ve svém článku [8]. V tomto důkazu je
ukázáno, že andělk dokáže unikat pro k ≥ 11. Pro k ≥ 2 je důkaz o něco
složitější a ponecháme jej tedy čtenáři k samostudiu.

Předpokládejme, že je každá buňka hracího pole označena souřadni-
cemi [x, y], kde x, y ∈ Z. Dále předpokládejme, že ďábel již před prvním
tahem odebral všechna pole, jejichž x-ová souřadnice je záporná. Tento
krok andělovi únik pouze ztíží, a tedy nemá vliv na obecnost důkazu. Na-
místo anděla však A. Mathé studuje takzvaného běžce. Běžec směřuje
těsně podél odebraných polí tak, že:

• má vždy odebraná pole nalevo vzhledem ke směru svého pohybu,

• může urazit libovolný počet polí, aby se dostal tam, kam by se
dostal i anděl,

• v každém tahu (dokud není uvězněn) se přesunuje co nejdále to
lze.
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Pro potřeby důkazu je navíc uvažováno, že běžec při pohybu jakoby obar-
vuje stěny nalevo, okolo kterých projde. Jak uvidíme později, důkaz také
vyžaduje, aby běžec v jednom tahu obarvil maximálně 2k stěn, tj. může
se zastavit dříve, než by se zastavil anděl kvůli nemožnosti obarvit další
stěnu. Obarvené stěny následně poslouží k přibližnému určení běžcovy
pozice. Více viz následující důkaz. Pohyb běžce je naznačen na obr. 9.

Obr. 9: Trasa běžce (šedá) těsně podél odebraných polí (červená) směrem
vzhůru. Tučné čáry značí již obarvené stěny podél běžcova pohybu

Obarvování stěn hraje v následujícím důkazu klíčovou roli, neboť po-
loha běžce je odhadována právě podle počtu obarvených stěn. Pozname-
nejme také, že běžec je slabší verzí anděla, tj. pokud by ďábel dokázal
uvěznit anděla, pak dokáže uvěznit i běžce. Naopak pokud ďábel nedo-
káže uvěznit běžce, pak nedokáže uvěznit ani silnějšího anděla.

Mathé také uvažuje hodného ďábla, který neodebírá pole, na něž běžec
dříve vstoupil. Důležité je, viz [8], že pokud hodný ďábel nepolapí anděla,
pak jej nepolapí ani ďábel. Z chování hodného ďábla navíc vyplývá, že
pokud běžec obarví některou stěnu podruhé, pak se dostal zpátky na svůj
začátek a již je polapen, neboť obíhá v kruhu. Podle toho lze také poznat,
kdy je běžec uvězněn. Dokud běžec neobarví některou stěnu podruhé,
pak může vždy ještě unikat.

Předpokládejme nyní, že běžec začíná v buňce [0, 0] a směřuje vzhůru
podél pomyslné osy y. Je jasné, že v prvních několika tazích (řekněme
prvních 10) běžec nemůže být uvězněn. Vždyť v jednom tahu dokáže
běžec oběhnout více polí, než kolik jich ďábel stihl za prvních 10 tahů
odebrat.
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Indukcí nyní předpokládejme, že běžec nebyl v prvních t tazích chycen.
Běžec v každém tahu urazí alespoň k polí (pokud může směřovat přímo
vzhůru k polí dopředu), a v čase t je již obarveno alespoň kt stěn. Kolik
z těchto stěn se nachází na ose y? Běžec směřuje vzhůru podél osy y
pouze s výjimkou případů, kdy obíhá odebraná pole (ta mají maximálně
4t stěn) a kdy mu ďábel vynutí směr dolů, viz obr. 9 (tehdy se běžec
posune maximálně o t polí dolů, neboť více polí není dosud odebráno).
Na ose y je tedy obarveno alespoň kt − 4t − t polí, tj. běžec se nachází
t(k−5) polí nad osou x. Protože však platí, že t ≥ 10 a k ≥ 11, pak máme
t(11 − 5) ≥ 10(11 − 5) ≥ 60. To znamená, že se běžec nachází alespoň
60 polí nad osou x, a protože běžec nemůže v jednom tahu obarvit více
než 2k = 22 stěn, proto se v (t+ 1)-ním tahu nemůže vrátit na původní
pole [0, 0]. Běžec by byl uvězněn, jenom pokud by se vrátil na původní
pole [0, 0]. Tam se ale v (t + 1)-ním tahu nevrátil, a tedy v (t + 1)-ním
tahu není uvězněn. Provedli jsme důkaz indukcí, že běžce nelze polapit.

Nyní jsme dokázali, že hodný ďábel nedokáže polapit běžce. Jak již
bylo naznačeno dříve, běžec neumí unikat tak dobře jako anděl. Proto
pokud hodný ďábel nepolapí běžce, pak nepolapí ani anděla. Důležitou
částí důkazu je také to, viz [8], že pokud anděla nepolapí hodný ďábel,
pak jej nepolapí ani ďábel.

Zmiňme nakonec, že t(k − 5) je konzervativní odhad polohy anděla.
Tím je myšleno, že po zevrubné analýze bychom jistě zjistili, že bychom
dokázali najít přesnější odhad běžcovy vzdálenosti od osy x. Tj. patrně
se nachází ve větší vzdálenosti od osy x. Pro potřeby našeho důkazu
však tento odhad postačuje. Zde uvedený důkaz funguje pro k ≥ 11, ale
fungoval by jistě i pro k ≥ 7. Pro k < 7 je potřeba postupovat opatrněji
a počítat pečlivěji. Nejpečlivější výpočty jsou potřeba pro k = 2, více
viz [8].

Závěr

Poznamenejme, že hra byla studována také ve třech rozměrech, viz [6],
[2]. Je tak již známo, že anděl13 dokáže ďáblovi ve třech dimenzích unik-
nout, viz [6]. Nicméně pokud je nám známo, tak hra ve třech dimenzích
dosud nebyla zcela rozřešena. Není tak jisté, zda dokáže například unikat
i anděl1. V minulosti se andělskému problému věnovala jen malá sku-
pina matematiků. Je to patrně také tím, že řešení úlohy nepřináší žádné
aplikovatelné poznatky a není jasné, jak na úlohu aplikovat standardní
matematické nástroje, se kterými jsou matematici zvyklí pracovat.

Na závěr tedy přenecháme čtenáři otázku. Zamyslete se, zda by bylo
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některé z uvedených důkazů možné aplikovat i tehdy, kdyby se anděl
pohyboval jako jezdec na šachovnici (viz také [4]). Dopadl by výsledek
jinak, kdyby mohl ďábel odebírat ve svém tahu dvě a více polí?

Poděkování

Tento příspěvek vznikl s podporou projektu DZRO Vojenské auto-
nomní a robotické systémy.
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Ochranovská hvězda:
Světlo naděje s geometrií v srdci

Tereza Bártlová, MFF UK, Praha

Ochranovská hvězda, známá také jako herrnhutská hvězda, je nejen
symbolem adventního času, ale také fascinující ukázkou spojení mate-
matiky, geometrie a tradice. Její příběh začíná v roce 1821 v saském
Herrnhutu (česky Ochranov), kde se původně zrodila jako netradiční
učební pomůcka.

Od matematického cvičení k vánoční ozdobě

V malém školním prostředí Herrnhutu, saského města založeného mo-
ravskými exulanty, byla hvězda díky svým složitým tvarům původně
určena k procvičování prostorové geometrie. Původní podoba byla im-
pozantní – složená z 110 jehlanů, z nichž některé měly trojúhelníkovou
a jiné čtvercovou základnu. Tato „ ježatá“ hvězda brzy zaujala studenty
natolik, že si začali vyrábět vlastní verze pro zdobení pokojů.

Obr. 1: Ochranovská hvězda (fotografie autorky)

*)Článek byl se svolením autorky převzat z webu MFF UK www.matfyz.cz.
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Postupem času se z praktické pomůcky stala ozdoba, která zářila ve
školách i domácnostech. Přidáním svíčky nebo jiného světelného zdroje
získala hvězda nový, slavnostní rozměr. Tím začala její cesta k tomu, aby
se stala neodmyslitelným symbolem adventu.

Symetrie a záře archimédovského mnohostěnu

Moderní verze Ochranovské hvězdy má 26 paprsků. Z hlediska ge-
ometrie jde o archimédovské těleso, konkrétně s mnohostěnem zvaným
rombokubooktaedr. Archimédovská tělesa, která vděčí za svůj název řec-
kému mysliteli Archimédovi ze Syrakus, jsou zvláštní skupinou geomet-
rických tvarů nacházející se na pomezí pravidelných platónských těles a
nepravidelných mnohostěnů.

Platónská tělesa, pojmenovaná po filozofovi Platónovi, jsou pravidelné
mnohostěny s naprosto symetrickými stěnami tvořenými shodnými pra-
videlnými mnohoúhelníky. Existuje pouze pět platónských těles: tetraedr
(čtyřstěn), hexaedr (krychle), oktaedr (osmistěn), dodekaedr (dvanácti-
stěn) a ikosaedr (dvacetistěn).

Archimédovská tělesa jsou oproti nim polopravidelné mnohostěny, je-
jichž stěny tvoří pravidelné mnohoúhelníky dvou nebo tří typů. Zároveň
zůstávají symetrická, protože v každém vrcholu se setkává stejný počet
stěn téhož typu ve stejném pořadí. Těchto těles je 13 a jsou výsledkem
„ořezávání“ platónských těles.

Například z krychle lze vytvořit rombokubooktaedr, který tvoří základ
ochranovské hvězdy, odříznutím hrany krychle rovinami rovnoběžnými
s jejími hranami, a to tak, aby z původních čtvercových stěn vznikly
menší čtvercové stěny, místo každé hrany vznikl opět čtverec a místo
původních vrcholů vznikly pravidelné trojúhelníky.

Obr. 2: Rombokubooktaedr (zdroj obrázku: https://dml.cz/bitstream/

handle/10338.dmlcz/402379/DejinyMat_54-2012-1_9.pdf)
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Rombokubooktaedr má 26 stěn: 18 čtvercových a 8 trojúhelníkových.
Na něj jsou v případě hvězdy připevněny jehlany – 18 čtyřbokých a
8 trojbokých, což jí dodává typický „ ježatý“ vzhled. Dokonalá symetrie
těchto těles fascinovala již starověké matematiky a dodnes inspirativně
kombinuje vědu s estetikou.

Novodobé provedení hvězd

V průběhu let se výroba ochranovské hvězdy výrazně zjednodušila.
Dnešní verze se již obejdou bez komplikovaného vnitřního tělesa, na které
by byly připevněny jednotlivé paprsky. Konstrukce hvězdy je nyní tvo-
řena lehkou, často skládací konstrukcí, která drží jednotlivé paprsky na
místě, případně se vnitřní konstrukce zcela vynechává a výroba hvězdy
spočívá pouze v lepení jehlanů k sobě. Tyto úpravy nejen usnadňují vý-
robu, ale také snižují hmotnost hvězdy, což je praktické při zavěšování a
manipulaci.

Pokud byste si chtěli ochranovskou hvězdu sami vyrobit, ale máte
pocit, že hvězda s 26 vrcholy je pro vás příliš složitá, můžete zkusit
jednodušší, ale velmi hezkou variantu podle našeho návodu.

Obr. 3: Jednoduchá ochranovská hvězda

Návod na výrobu jednoduché ochranovské hvězdy: Připravte si šest
jehlanů (můžete využít naši šablonu na obr. 4), které k sobě slepíte tak,
jako kdybyste je lepili na stěny krychle. Vznikne vám jednodušší verze
ochranovské hvězdy se šesti vrcholy.

Světlo naděje a tradice

Ochranovská hvězda se rozšířila z Herrnhutu do celého světa. Dnes je
neodmyslitelnou součástí vánoční výzdoby, zejména v Německu, Česku a
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dalších zemích se sasko-ochranovskou tradicí. Její zářivý vzhled a doko-
nalá symetrie připomínají betlémskou hvězdu, která symbolizuje naději,
lásku a mír.

Obr. 4: Plášť jehlanu

Obr. 5: Ochranovská hvězda se šesti hroty (fotografie autorky)

Pokud v adventním čase projíždíte setmělými vesničkami Saska nebo
jiných regionů, nemůžete ochranovskou hvězdu přehlédnout. Září na do-
mech, kostelích i ulicích, přináší radost a připomíná bohatou historii,
která spojuje vědu, víru a kulturu.
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Krabice na dárek

Následující vánoční úloha je od prof. Jiřího Bouchaly, stejně jako ob-
rázek Hlavo-lam, který ji doprovází.

Úloha
Představte si, že máte velmi kvalitní písek a na půdě karton ve tvaru

čtverce o straně délky 1 metr. Svému nejlepšímu kamarádovi chcete dát
k Vánocům svůj kvalitní písek. A protože je to nejlepší kamarád, chcete
karton poskládat tak, aby vznikla krabice (bez víka) co největšího objemu.
Ohýbáte karton tak, že uprostřed zůstane čtverec o straně délky a, přičemž
boky budou mít výšku b, viz obrázek 1. Jaké budou délky a, b tak, aby
objem krabice byl co největší?

Obr. 1: Ohýbání kartonu
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Úloha z minulého čísla zněla:
Ukažte, že mezi libovolnými 39 po sobě jdoucími přirozenými čísly je

alespoň jedno, jehož součet číslic je dělitelný 11.

A pak následovala ještě úloha v obecnější podobě:
Jaké je minimální číslo Mz, pro které mezi každými Mz po sobě jdou-

cími přirozenými čísly existuje alespoň jedno číslo, jehož součet číslic
v zápisu o základu z je dělitelný z + 1?

Řešení těchto úloh je popsáno v tomto čísle v článku Hrátky s dělitel-
ností: Řešení – Solution od Vlastimila Dlaba a Erzsébet Lukács.

Obr. 2: Jiří Bouchala: Hlavo-lam
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Hrátky s dělitelností. Řešení – Solution

Vlastimil Dlab, Praha – Erzsébet Lukács, Budapešť

V tomto článku vyřešíme úlohy z minulých Matematických oříšků.

Úloha 1
Ukažte, že mezi libovolnými 39 po sobě jdoucími přirozenými čísly je

alespoň jedno, jehož součet číslic je dělitelný 11.

A v obecnější podobě.

Úloha 2
Jaké je minimální číslo Mz, pro které mezi každými Mz po sobě jdou-

cími přirozenými čísly existuje alespoň jedno číslo, jehož součet číslic
v zápisu o základu z je dělitelný z + 1?

V první části článku rozřešíme úlohu 1 pro dekadický zápis čísel, tj.
pro z = 10. Ta je napsána česky. Druhá část, řešící úlohu obecně pro zápis
čísel v soustavě o libovolném základu z, je prezentována v angličtině.

Použité značení

Každé přirozené číslo a lze jednoznačně zapsat v číselné soustavě o zá-
kladu z ∈ N, z ≥ 2,

a = asz
s + as−1z

s−1 + · · ·+ a2z
2 + a1z + a0, (1)

kde as ̸= 0, a0, a1, . . . , as ∈ {0, 1, . . . , z − 1}. Tento zápis budeme značit
stručněji

a = (as, as−1 . . . a2a1a0)z. (2)

Dále definujme součet číslic

σz(a) =

s∑

t=0

at. (3)

Pomocí funkce σz je možno formulovat úlohu 2 následovně:

Úloha 2
Pro daný základ z najděte nejmenší číslo Mz splňující podmínku, že

každá posloupnost Mz po sobě jdoucích přirozených čísel obsahuje číslo x
takové, že σz(x) je dělitelné číslem z + 1.

Číslo Mz budeme dále v textu značit Min(z).
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Řešení úlohy 1

V této první části budeme čísly rozumět přirozená čísla spolu s nulou,
zapsaná v desítkové číselné soustavě. Každému přirozenému číslu

a = (asas−1 . . . a2a1a0)10

je tedy přiřazen součet číslic σ(a) =
∑s

t=0 at.

Konečnou posloupnost po sobě jdoucích (celých) čísel nazveme seg-
ment. Segment délky d začínající číslem a budeme značit symbolem
aS(d):

aS(d) = (a, a+ 1, a+ 2, . . . , a+ d− 1).

Tedy

0S(10) = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9),
pro 1 ≤ k ≤ 9 je 0S(k) = (0, 1, 2, . . . , k − 1) a
10−kS(k) = (10− k, 10− k + 1, 10− k + 2, . . . , 9).

Každá posloupnost posledních číslic čísel segmentu aS(39) zapsaných
v desítkové soustavě má tedy jeden z těchto tvarů:

0S(10) 0S(10) 0S(10) 0S(9),

1S(9) 0S(10) 0S(10) 0S(10),
· · · · · · · · ·

tS(10− t) 0S(10) 0S(10) 0S(10) 0S(t− 1) pro 2 ≤ t ≤ 8,

· · · · · · · · ·

9S(1) 0S(10) 0S(10) 0S(10) 0S(8).
Proto každá z těchto posloupností obsahuje posloupnost

0S(10) 0S(10) 0S(10) = (0, 1, 2, . . . , 8, 9, 0, 1, 2, . . . , 8, 9, 0, 1, 2, . . . , 8, 9).

To jsou poslední číslice segmentu, který označíme

mS(30) = (m,m+ 1,m+ 2, . . . ,m+ 29).

Nyní uvažujme příslušnou posloupnost číslic

(k1, k2, k3, . . . , k9, k10, k11, k12, k13, . . . , k19, k20, k21, k22, k23, . . . , k29, k30),
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které jsou v tomto zápisu čísel příslušného segmentu mS(30) na předpo-
sledním místě. Je-li k1 = k ̸= 9, je příslušná posloupnost párů posledních
číslic

(k 0, k 1, k 2, k 3, . . . , k 9, k + 1 0, k + 1 1, k + 1 2, . . . , k + 1 9, . . . , k29 8, k30 9).

Mimochodem, zde k29 = k30 = 0 nebo k + 2 v závislosti na tom, zda
k = 8, nebo k ̸= 8. Omezme se na prvních 20 čísel tohoto segmentu a
označme σ(m) = N. Potom posloupnost

(σ(m), σ(m+ 1), . . . , σ(m+ 9), σ(m+ 10), σ(m+ 11), . . . , σ(m+ 19)) =

= (N,N + 1, . . . , N + 9, N + 1, N + 2, . . . , N + 10),

a proto mezi těmito čísly musí být číslo dělitelné 11.
Jestliže k1 = k = 9, pak k11 ̸= 9 a předešlý postup aplikujeme na po-

sloupnost (k11, k12, . . . , k30). Tím je dokázáno, že v dekadickém případě
každý segment délky 39 obsahuje číslo, jehož součet číslic, tj. σ−hodnota
je násobek 11.

Dodejme ještě, že kromě segmentu

999981S(38) = (999981, . . . . . . , 1000018)

zmíněného v zadání úlohy, kdy σ−hodnota žádného z jeho prvků není
násobkem 11, je takových segmentů délky 38 nekonečně mnoho. Čtenář
se může přesvědčit, že pro každé t = 0, 1, 2, . . . ,

99···9981S(38) = (99 · · · 9981, . . . . . . , 100 · · · 0018),

kde počet devítek (a příslušných nul) je 11t+4, má tuto vlastnost. Tedy
Min(10) = 39.

Solution of Problem 2

The solution presented in the first part is a special case of the general
situation where the numbers are expressed in base-z numeral system.
Let us express in English the general problem that we want to solve.

Problem 2
For a given base z find the minimum number Mz satisfying the con-

dition that every sequence of Mz consecutive non-negative integers con-
tains a number x such that σz(x) of the digits of x in the base-z system
is divisible by the number z + 1.
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In the following, we denote Mz by Min(z).
Following the first part of the article, denote by aS(d) the sequence of

d consecutive numbers starting with the number a and call it a segment.
Let us call the segment aS(z) a basic z-sequence if the starting number
a is divisible by z. Thus in the base-z form (1) of the numbers of this
segment only last digits change, running from 0 to z − 1. The σz-values
(3) of these numbers are also consecutive numbers.

We begin the solution of the problem with a few preliminary observa-
tions.

Observation 1. A basic z-sequence contains a number whose σz-value
is divisible by z+1, unless it starts with a number whose σz-value has a
remainder 1 when divided by z + 1.

Let aS(z) be a basic z-sequence and let σz(a) = k. Then the σz-values
of the numbers in aS(z) form a sequence kS(z) = (k, k+1, . . . , k+z−1).
Among the z+1 consecutive numbers k− 1, k, . . . , k+ z− 1, exactly one
is divisible by z + 1; this number lies in kS(z) if and only if k − 1 is not
a multiple of z + 1.

Observation 2. Let aS(2z) be a sequence consisting of two consecutive
basic z-sequences, where a = (asas−1 . . . a2a10)z. If a1 < z − 1, then
aS(2z) contains a number whose σz-value is divisible by z + 1.

In this case aS(2z) = aS(z)a+zS(z), where a+ z = (asas−1 . . . a2a1 +
10)z, so σz(a+ z) = σz(a)+1. Therefore, by Observation 1, either aS(z)
or a+zS(z) contains a number with σz-value divisible by z + 1.

Observation 3. If z is odd, then in any sequence aS(2z) consisting
of two consecutive basic z-sequences, there is a number with σz-value
divisible by z + 1.

Let a = (asas−1 . . . a2a10)z be the starting number of the first sequence.
By Observation 2, the statement is true if a1 < z − 1. Thus, it suffices
to consider the case where

a = (as . . . ak+1(z − 1) . . . (z − 1)0)z

for some k > 0, where ak+1 < z − 1. Then the starting number of the
second basic z-sequence is

a+ z = (as . . . ak+2(ak+1 + 1)0 . . . 0)z.
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Thus, σz(a+ z)− σz(a) = −k(z − 1) + 1. But this is an odd number, so
it cannot be divisible by z+1. Hence σz(a) and σz(a+ z) yield different
remainders when divided by z + 1. It now follows from Observation 1
that at least one of aS(z) and a+zS(z) contains a number with σz-value
divisible by z + 1.

Based on these observations, we can deduce the following statement.

Corollary. Any sequence of 4z−1 consecutive numbers contains a num-
ber with σz-value divisible by z+1. In fact, if z is odd, then any sequence
of 3z − 1 consecutive numbers contains a number with σz-value divisible
by z + 1.

Indeed, a sequence of 4z − 1 consecutive numbers must contain three
consecutive basic z-sequences (otherwise the length of the sequence could
not be greater than (z−1)+2z+(z−1) = 4z−2), and at least one of the
first and second of these sequences would start with a number satisfying
the condition for Observation 1. When z is odd then we can do even
better: a sequence of 3z − 1 numbers contains at least two consecutive
basic z-sequences and thus following Observation 3, there is a number
in the sequence whose σz-value is divisible by z + 1.

Now we want to show that these are actually the minimum values we
are looking for.

Theorem.

Min(z) =

{
4z − 1 if z is even,
3z − 1 if z is odd.

Let us first consider the case where z is odd. As a counterexample
we need a sequence a−z+1S(3z − 2) = a−z+1S(z − 1)aS(z)a+zS(z − 1),
where a = (as . . . a10)z and the remainder of σz(a) by z + 1 is 1 (see
Observations 3 and 1). Actually, 1S(3z − 2) = (1, 2, . . . , 3z − 2) is such
a sequence and the table below shows that none of the σz-values are
divisible by z + 1.

a 1 · · · z − 1 z · · · (2z − 1) 2z · · · 3z − 2

in base z 1 · · · (z−1) 10 · · · 1(z−1) 20 · · · 2(z−2)

σz(a) 1 · · · z − 1 1 · · · z 2 · · · z

In fact, if we choose 0 < a1 < z − 1, while assuring that σz(a) has a
remainder 1 by z+1, then the σz-values of the numbers in the sequence
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will still have the same remainders as above and thus those sequences
will also be counterexamples.

Suppose now that z is even and let us try to construct a sequence
of 4z − 2 consecutive numbers such that the σz-value of none of these
numbers is divisible by z+1. By Observation 2, this sequence of numbers
must not contain more than two consecutive basic z-sequences. Hence it
contains exactly two such sequences, which are preceded and followed by
z − 1 numbers. Furthermore, the two basic z-sequences must start with
a and a+ z such that σz(a) and σz(a+ z) both give remainder 1 when
divided by z + 1, otherwise Observation 1 would ensure the existence
of a number with σz-value divisible by z + 1. So a must be of the form
described in the proof of Observation 3. With the notation used there,
we have σz(a + z) − σz(a) = −k(z − 1) + 1. The divisibility conditions
imply that both this and σz(a + z) − 1 = as + . . . + ak+1 should be
divisible by z + 1. The first is equivalent to saying that

(z + 1) | −k(z − 1) + 1 + k(z + 1) = 2k + 1,

and clearly, k = z
2 satisfies this. The easiest way to satisfy the second

divisibility condition is to set as = . . . = ak+1 = 0. So we choose the
sequence

a−z+1S(4z − 2) = a−z+1S(z − 1)aS(z)a+zS(z)a+2zS(z − 1)

with a = ((z − 1) . . . (z − 1)(z − 1)0)z, where the number of the digits
equal to (z − 1) is k = z

2 . Now we need to check that also the σz-values
of the numbers in the “incomplete” subsequences a−z+1S(z − 1) and
a+2zS(z− 1) are not divisible by z+1. The first number of the sequence
a−z+1S(z − 1) is a− z + 1 = ((z − 1) . . . (z − 1)(z − 2)1)z, and thus

σz(a− z + 1) =
(z
2
− 1

)
(z − 1) + (z − 2) + 1 =

z

2
(z − 1) = σz(a).

Since z
2 (z− 1) = (z+1)

(
z
2 − 1

)
+1, the remainder of both σz(a) and

of σz(a− z+1) is 1 when divided by z+1. Furthermore, a+ z = zk+1 =
(1 0 . . . 0 0 0)z, and a+2z = zk+1+z = (1 0 . . . 0 1 0)z, with σz-values
1 and 2. Thus the remainder terms of the σz-values of the 4z−2 numbers
are

(1, . . . , z − 1)(1, . . . , z)(1, . . . , z)(2, . . . , z).

This shows that neither of the σz-values of the 4z−2 consecutive numbers
in a−z+1S(4z − 2) is divisible by z + 1.
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As a concrete illustration, consider the case where z = 60. To find
a counterexample in this case, we need numbers that have at least 32
digits (in base 60) and at least 56 digits in the decimal system. To be
more specific, using the following standard way of denoting the digits in
the sexagesimal system

1 2 3 4 5 6

7 8 9 A = 10 B = 11 C = 12

. . . . . . . . . . . . . . . . . .

V = 31 W = 32 X = 33 Y = 34 Z = 35 a = 36

b = 37 c = 38 d = 39 e = 40 f = 41 g = 42

. . . . . . . . . . . . . . . . . .

t = 55 u = 56 v = 57 w = 58 x = 59 0

we may display the situation in the following table:

segment value of σ
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxw1 1770

13264435183244001473986559999999999999999999999999999881 decimal
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxw2 1771

13264435183244001473986559999999999999999999999999999882 decimal
· · · · · · · · · · · ·

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxww 1827
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxwx 1828
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx0 1770
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1 1771

· · · · · · · · · · · ·
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 1829
10000000000000000000000000000000 1
10000000000000000000000000000001 2

· · · · · · · · · · · ·
1000000000000000000000000000000x 60
10000000000000000000000000000010 2
10000000000000000000000000000011 3

· · · · · · · · · · · ·
1000000000000000000000000000001w 60

132644351832440014739865560000000000000000000000000000118 decimal

Table 1 The segment of the length 238 in the sexagesimal system and
the translation into the decimal system
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Energie větru

Oldřich Lepil, Přírodovědecká fakulta UP, Olomouc

Větrné elektrárny jako alternativní zdroje elektrické energie jsou v sou-
časnosti ve středu pozornosti celé společnosti. Dříve to byly hlavně te-
pelné elektrárny, které pracují na základě termodynamických zákonů.
O nich víme, že cyklus takového tepelného stroje má svoje omezení,
která určují účinnost přeměny tepla na mechanickou energii. V tomto
příspěvku se podíváme, zda existují obdobná omezení účinnosti přeměny
energie proudícího vzduchu na mechanickou energii pro pohon elektrárny.

Určíme energii větru a posoudíme možnost její přeměny na energii
otáčivého pohybu soustrojí větrné elektrárny. Budeme uvažovat větr-
nou elektrárnu, jejíž rotor má průměr d = 2r, takže účinná plocha S
rotoru větrné elektrárny, kterou proudí vzduch, bude S = pr2 (obr. 1).
Vzduch má hustotu ρ a výpočet provedeme pro rovnoměrný pohyb vzdu-
chu stálou rychlostí v. Jestliže vzduch urazí za dobu ∆t dráhu ∆s, bude
hmotnost vzduchu, který projde účinnou plochou rotoru, m = ρS∆s a
celková kinetická energie vzduchu je

Ek =
1

2
mv2 =

1

2
ρS∆sv2.

d = 2r

S = pr2

Obr. 1
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Pokud by veškerou tuto energii bylo možné využít, získali bychom
výkon

P =
Ek

∆t
=

1

2
ρS

∆s

∆t
v2 =

1

2
ρSv3.

Z tohoto vztahu je zřejmé, že pro využití větrné energie je rozhodující
rychlost větru. Kdybychom uvažovali např. průměrnou rychlost větru
v České republice ve výšce 10 m nad zemí, která je 4 m · s−1, byl by
při hustotě vzduchu ρ = 1,2 kg ·m−3 výkon připadající na 1 m2 účinné
plochy rotoru P/S = 0,6 v3 ≈ 38 W · m−2 (veličina se označuje jako
hustota výkonu). Větrné elektrárny se budují v lokalitách, kde je prů-
měrná rychlost větru alespoň 6 m·s−1, a tomu odpovídá hustota výkonu
130 W ·m−2, tedy téměř 3,5krát větší.

Výkon větrné elektrárny ovlivňuje také hustota vzduchu, která se
v místě elektrárny může měnit v závislosti na změnách tlaku a tep-
loty vzduchu. Pro určení hustoty vzduchu vyjdeme ze stavové rovnice
ideálního plynu ve tvaru

pV =
m

Mm
RT,

kde Mm = 29 · 10−3 kg ·mol−1 je efektivní molární hmotnost vzduchu.
Pro hustotu vzduchu pak platí vztah

ρ =
m

V
=

Mm

R

p

T
=

1

287

p

T
,

kde p je tlak vzduchu v pascalech a T je termodynamická teplota vzduchu
v kelvinech. V blízkosti povrchu Země lze při zjednodušených výpočtech
uvažovat již uvedenou přibližnou hodnotu hustoty vzduchu 1,2 kg ·m−3.

V praxi je však možné využít jen podstatně menší část energie vě-
tru. Tímto problémem se ve 20. letech 20. století zabýval rakouský in-
ženýr Albert Betz (1885–1968), který zkoumal možnost využití energie
větru k pohonu. Jestliže např. plochou rotoru proudí vzduch rychlostí v1
(vstupní rychlost), předává mu část energie a rychlost vzduchu se zmenší
na rychlost v2 (výstupní rychlost). Můžeme uvažovat, že vzduch zaříze-
ním proudí průměrnou rychlostí v = (v1 + v2)/2 a hmotnost vzduchu,
který projde rotorem za jednotku času, čili hmotností tok vzduchu je
m = ρSv. Na vstupu elektrárny má vzduch energii Ek1 = 1

2mv21 a na
výstupu energii Ek2 = 1

2mv22 . Je tedy možné získat energii

∆E = Ek1 − Ek2 =
1

2
m

(
v21 − v22

)
=

1

2
ρS · 1

2
(v1 + v2)

(
v21 − v22

)
.
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Důležité však je, jak tato energie závisí na poměru obou rychlostí. Ozna-
číme x poměr rychlostí (x = v2/v1) a

y =
1

2
(v1 + v2)

(
v21 − v22

)
=

1

2
v31

(
1− x2 + x− x3

)
.

Na obr. 2 je graf závislosti y = f(x), z něhož je patrné, že veličina y
dosahuje maxima při hodnotě x = 0,33, tedy když rychlost na vstupu
zařízení je 3krát větší než na výstupu (v2/v1 = 1/3).

Obr. 2

Provedeme výpočet veličiny y pro tento poměr rychlostí, při němž se
maximální část energie větru přemění na rotační energii:

y =
1

2
v31

(
1− x2 + x− x3

)
=

1

2
v31

(
1− 1

9
+

1

3
− 1

27

)
=

16

27
v31

.
= 0,59 v31 .

Odtud vyplývá, že maximální výkon zařízení využívajícího energii větru
je

Pmax
.
= 0,59 · 1

2
ρSv31 .

Tento vztah se označuje také jako Betzovo pravidlo. Maximální dosa-
žitelná hustota výkonu při rychlosti větru v je s ohledem na Betzovo
pravidlo dána vztahem

Pmax

S
≈ 0,35v3.
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Teoretická největší účinnost zařízení využívajících energii proudícího
vzduchu je tedy necelých 60 % celkové kinetické energie vzduchu. Ani nej-
modernější systémy současných větrných elektráren však této účinnosti
nedosahují, poněvadž dochází k dalším ztrátám energie. Jsou to jednak
ztráty v mechanickém soustrojí elektrárny, jednak ztráty v elektrických
obvodech generátoru a při transformaci výstupního napětí elektrárny.
To způsobuje, že větrné elektrárny využívají přibližně jen 30 % až 45 %
energie větru.

Například větrná elektrárna v ČR u obce Pchery má rotor o průměru
100 m a jeho osa je ve výšce 88 m. Startovní rychlost větru je 4 m · s−1,
jmenovitá rychlost 12,5 m ·s−1 a vypínací rychlost 22 m ·s−1. Jmenovitý
výkon elektrárny je 3 032 kW. Energie větru při jmenovité rychlosti a
hustotě vzduchu ρ = 1,2 kg ·m−3 je

P =
1

2
ρSv3 ≈ 9 400 kW.

Vzhledem k jmenovitému výkonu elektrárny je využito přibližně jen 32 %
energie větru, což je 56 % maximálně využitelné energie určené Betzovým
pravidlem.

Dosud jsme si všímali jen změn rychlosti proudění vzduchu před vrtu-
lemi rotoru elektrárny a za rotorem, přičemž v2 < v1. Současně budeme
předpokládat, že vzduch proudí plochou rotoru průměrnou rychlostí v.
To znamená, že podle zákona zachování energie, vyjádřeného Bernoulli-
ovou rovnicí, dochází v místě rotoru k poklesu tlaku vzduchu ∆p. Tomu
odpovídá vznik tahové síly T rotoru, která je dána rozdílem tlaků těsně
před rotorem a za ním. Má velikost T = ∆pS, kde S je plocha rotoru.
Tahovou sílu lze současně vyjádřit na základě 2. Newtonova pohybového
zákona jako změnu hybnosti vzduchu, který prošel rotorem za jednotku
času, čili T = m(v1+v2), kde m je hmotnostní tok vzduchu. Nejvíce nás
však zajímá výkon P , který lze prouděním vzduchu rotorem získat:

P =
1

2
m

(
v21 − v22

)
.

Pro posouzení vlivu rychlosti větru na tahovou sílu rotoru a výkon
elektrárny se zavádí bezrozměrová veličina, axiální indukční faktor a. Je
definován vztahem

a =
v1 − v

v1
,

Ročník 100 (2025), číslo 4 49



FYZIKA

takže v = v1(1−a) a v2 = v1(1−2a). S použitím součinitele a vyjádříme
velikost tahové síly

T = 2mv1a(1− a)

a výkon
P = 2mv21a(1− a)2.

Porovnáme tahovou sílu s maximální hodnotou danou dynamickým
tlakem vzduchu proudícího rychlostí v1

Tmax =
1

2
ρSv21 =

1

2
mv1.

a definujeme veličinu tahový součinitel CT

CT =
T

Tmax
=

2mv1a(1− a)
1
2mv1

= 4a(1− a).

Graf součinitele tahu CT = f(a) je na obr. 3.

Obr. 3

Optimální rychlosti v proudění vzduchu rotorem odpovídá maximum
této funkce, kterou určíme anulováním její derivace

dCT

da
=

d

da
[4a(1− a)] = 4− 8a = 0 =⇒ a = 0,5.
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Z výsledku vyplývá, že maximální tahové síly lze dosáhnout v případě, že
rotorem protéká vzduch poloviční rychlostí, než je rychlost volně prou-
dícího vzduchu (v = 0,5v1). Při této hodnotě součinitele a má poměr
rychlostí v2/v1 nulovou hodnotu (viz zeleně na obr. 3) a při větších hod-
notách a je poměr rychlostí záporný, což postrádá fyzikální smysl. Proto
hodnotou a = 0,5 také končí platnost Betzova pravidla (tzv. Betzův li-
mit).

Obdobnou úvahou porovnáme celkový výkon volně proudícího vzdu-
chu

Pmax =
1

2
ρSv · v2 =

1

2
mv2

s výkonem P a určíme výkonový součinitel CP

CP =
P

Pmax
= 4a(1− a)2.

Závislost CP = f(a) je rovněž na obr. 3. Vidíme, že maximum dosahuje
při menší hodnotě a a tedy při menší rychlosti. To opět zjistíme určením
maxima:

dCP

da
=

d

da

[
4a(1− a)2

]
= 1− 4a+ 3a2 = 0 =⇒ a ∈ {1, 1/3}.

Pro a = 1/3 platí

CPmax
=

4

3

(
1− 1

3

)
=

16

27

.
= 0,593.

Výsledek odpovídá Betzovu pravidlu, odvozenému v první části pří-
spěvku.

Dospěli jsme k závěru, že tahová síla rotoru větrné elektrárny závisí
na druhé mocnině rychlosti větru a průměru rotoru a na součiniteli tahu.
Snahou je minimalizovat tah rotoru pro danou rychlost větru a průměr
motoru, tzn. pro co nejmenší hodnoty CT. Výkon elektrárny závisí na
třetí mocnině rychlosti větru, na druhé mocnině průměru rotoru a na
součiniteli CP.

L i t e r a t u r a

[1] Aerodynamics_Presentation.pdf (nd.edu).

[2] 2a.1 The Actuator Disk Model | AERSP 583: Wind Turbine Aerodynamics
(psu.edu).

[3] Physics of Wind Turbines | Energy Fundamentals (uni-leipzig.de).
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Věda vs. konspirace:
Proč se vlastně zdržovat vědou?

Leontýna Šlégrová, Jan Šlégr
Přírodovědecká fakulta Univerzity Hradec Králové

Abstrakt. Jak poznat rozdíl mezi vědeckou teorií a konspiračním tvrzením?
V článku ukazujeme, že vědecké teorie musí být v souladu s ověřenými po-
znatky, jejich výsledky musí být možné nezávisle zopakovat a procházejí přís-
ným recenzním řízením. Na příkladech teorií duté Země, studené fúze nebo
údajného supravodiče LK-99 ukazujeme, proč je reprodukovatelnost klíčem
k potvrzení objevů. Zároveň upozorňujeme na rozdíl mezi skutečnými odbor-
nými časopisy a publikacemi, které otiskují „zázračné“ výsledky bez kritické
kontroly.

Úvod

V předchozích dvou dílech našeho seriálu jsme se zabývali tím, že
konspirační teorie často neuspějí při experimentálním ověřování jejich
tvrzení a také tím, že konspirační teorie často ani experimentálně ověřit
nejde – jsou často formulovány tak, aby nebyly falzifikovatelné. V tomto
díle se podíváme na další vlastnosti skutečných vědeckých teorií, které
konspirační teorie často postrádají.

Konzistence s existujícími poznatky

Tvrzení konspiračních teorií často nejsou v souladu s obecně uzná-
vanými teoriemi (což jsme viděli již na příkladu ploché Země). Poučený
čtenář by mohl namítnout, že například taková speciální teorie relativity
přece také byla v rozporu s do té doby uznávanou newtonovskou fyzikou,
a přesto bylo experimentálně dokázáno, že je správná. Ovšem speciální
teorie relativity není s newtonovskou fyzikou v rozporu – pro malé rych-
losti její popis reality přechází v popis klasický: Lorentzův faktor se pro
malé rychlosti blíží jedničce:

lim
v→0

1√
1− v2

c2

= 1.

Relativistické rovnice pak přecházejí v rovnice, které známe z klasické
(newtonovské) fyziky.

52 Rozhledy matematicko-fyzikální



FYZIKA

Protože teorii ploché Země, která je v příkrém rozporu s klasickou
astronomií, geofyzikou, gravimetrií, optikou a lecčím dalším, jsme už
řešili, ukážeme si výše uvedené na příkladu jiné konspirační teorie o tvaru
naší planety, a sice na teorii duté Země.

Myšlenka duté Země se poprvé objevila v 17. století, kdy se Edmund
Halley snažil vysvětlit anomálie v magnetickém poli, zejména magnetic-
kou deklinaci (že kompas na různých místech neukazuje přesně k země-
pisným pólům Země) a to, že se magnetické póly Země pohybují. Navrhl
hypotézu, že je Země tvořena několika soustřednými kulovými vrstvami,
které jsou odděleny dutinami, a z nichž každá má své vlastní magne-
tické pole. Podle Halleyho se tyto vrstvy mohou nezávisle otáčet, což
by vysvětlovalo pomalé posuny magnetických pólů a složitý charakter
magnetického pole [1]. To byla ve své době naprosto přijatelná hypo-
téza, protože v té době ještě neexistovala seismologie, která by popsala
nitro Země, ani geofyzikální modely jádra, které popisují vznik magne-
tického pole Země. Koneckonců, gravitační měření hustoty Země provedl
Cavendish až v roce 1798. Halleyho hypotéza nebyla konspirační – byla
založena na tehdy dostupných datech.

Situace se změnila v 19. století, kdy John Cleves Symmes propago-
val teorii tzv. „polárních otvorů“, kterými by bylo možné vstoupit do
nitra planety, a kdy vznikla i komunita kolem představy Cyruse Teeda,
který jako první tvrdil, že lidé ve skutečnosti žijí uvnitř duté Země.
Pro někoho, kdo je seznámen se základními myšlenkami ploché Země, to
není nic nepředstavitelného – prostě žijeme na vnitřním povrchu koule
a to, čemu říkáme vesmír, je jakýsi mlžný oblak se dvěma většími tělesy
(Sluncem a Měsícem), který se otáčí uprostřed kulové dutiny. Později
vznikly různé okultní teorie, v nichž např. německé společnosti jako Vril
a Thule kombinovaly myšlenky duté Země s mysticismem, ztracenými
civilizacemi a energetickými zdroji. Jacques Bergier ve své knize Jitro
kouzelníků [2] dokonce píše, že za druhé světové války němečtí vědci za-
měřovali radarové vlny tak, aby se odrazily od vnitřního povrchu planety
a umožnily sledovat objekty na opačné straně Země. Toto tvrzení však
není doloženo žádnými historickými prameny ani technickými údaji a
většina historiků ho považuje za Bergierovu fabulaci. Neexistuje žádný
důkaz, že by Wehrmacht či SS vyvíjeli technologii založenou na modelu
duté Země.1)

1)V tuto chvíli jsme z jedné konspirační teorie plynule přešli do druhé; to se občas
stane. Berme to ale rovněž jako ukázku toho, že nesmysly nemusí být jen na Internetu,
ale i v tištěných knihách.
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Moderní věda poskytuje jednoznačné důkazy, že Země dutá není:
Seismologie využívá zemětřesné vlny k určení struktury naší planety.
Seismologie nám umožňuje zjistit vnitřní stavbu Země díky analýze ší-
ření seizmických vln, které vznikají při zemětřeseních nebo umělých ex-
plozích. Existují dva hlavní typy vln: P-vlny (primární, podélné) se šíří
stlačováním a rozpínáním hornin a dokážou procházet pevnými, kapal-
nými i plynnými látkami, zatímco S-vlny (sekundární, příčné) se šíří
kmitáním kolmo na směr pohybu a neprocházejí kapalinami. Měřením
rychlosti, odrazů a lomů těchto vln v různých hloubkách dokážeme ur-
čit, kde se mění hustota a složení hornin (viz obr. 1). Pokud například
S-vlny určitou oblastí vůbec neprocházejí, znamená to, že tam musí být
kapalné prostředí.

Obr. 1: P-vlny a S-vlny při průchodu Zemí. Původní obrázek © Pearson Pren-
tice Hall, Inc.

Díky této metodě vědci zjistili, že Země má vrstvenou strukturu: ten-
kou kůru, silný plášť, kapalné vnější jádro a pevné vnitřní jádro. Klíčové
objevy přinesl Richard Oldham (1906), který z absence S-vln usoudil,
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že Země musí mít kapalné vnější jádro, a Inge Lehmann (1936), jež ob-
jevila pevné vnitřní jádro podle odrazů P-vln. Kdyby byla Země dutá,
seizmické vlny by se chovaly zcela jinak – vznikaly by rozsáhlé tiché zóny
a naměřené signály by se zásadně lišily od toho, co dnes pozorujeme. Na-
víc gravitační měření dokazují, že hustota Země činí asi 5 500 kg ·m−3,
což by bylo u duté planety nemožné.

Ke stejnému výsledku lze dojít také z oběhu Měsíce kolem Země (sa-
mozřejmě pokud předpokládáme, že Měsíc obíhá kolem téměř kulové
Země): Gravitační síla, kterou Země působí na Měsíc, je silou dostředi-
vou, která jej udržuje na kruhové trajektorii:

MM
v2

r
= G

MZMM

r2
.

Hmotnost orbitujícího tělesa se zkrátí (takže hmotnost Měsíce nemu-
síme znát) a ze známé doby oběhu (27,3 dne) a obvodu oběžné dráhy
(uvažujeme kružnici s poloměrem 384 000 km) určíme hmotnost Země:

MZ =
v2r

G
=

(2pr)2r

GT 2
=

4p2r3

GT 2

.
= 6,02 · 1024 kg.

Pokud budeme uvažovat Zemi jako kouli o poloměru 6 371 km, získáme
hustotu

ρ =
MZ
4
3pR

3
Z

.
= 5500 kg ·m−3.

Máme tedy několik nezávislých důkazních linií, které směřují ke stej-
nému závěru: Země má vrstvenou strukturu. Magnetické pole navíc vzniká
v kapalném vnějším jádru, což koncept duté Země vylučuje. Současná ge-
ofyzika tak poskytuje konzistentní model, který experimentálně vyvrací
všechny varianty teorie.

Reprodukovatelnost výsledků

Na první pohled to vypadá jako samozřejmost, ale pokud máme teorii,
která něco předpovídá, musí být daný postup nebo experiment nezávisle
reprodukovatelný dalšími výzkumníky.

Například teorie ploché Země v jedné ze svých variant pracuje s tím, že
Slunce ve skutečnosti nezapadá (kam by taky zapadalo na ploché Zemi,
že), ale že se od pozorovatele pouze vzdaluje. To dokládají různými ob-
rázky a videi, kdy pomocí zoomu fotoaparátu „vytáhnou“ Slunce zpoza
obzoru, případně ukazují, že večer má Slunce jinou velikost než přes den.
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Autoři tohoto článku se pokusili jejich tvrzení ověřit a pomocí fotoapa-
rátu s astronomickou solární fólií zjistili, že se velikost slunečního disku
během dne nemění (i když během západu může být deformován vlivem
lomu světla v atmosféře) a že ani 125násobným zoomem není možné
Slunce u obzoru najít, jakmile jednou zapadne.

Tento požadavek je standardní součástí vědecké práce: Např. v březnu
1989 oznámili chemici Martin Fleischmann a Stanley Pons z University
of Utah, že dosáhli studené fúze – jaderné reakce uvolňující energii při
pokojové teplotě. Aby lehčí jádra sfúzovala na jádra těžší, je potřeba pře-
konat elektrostatickou sílu, která je odpuzuje. Pokud se jádra dostanou
dostatečně blízko k sobě, převáží silná jaderná síla a dojde ke sloučení
jader a uvolnění energie. Proto fúzní reakce probíhají za vysokých tep-
lot, kdy mají částice takovou rychlost, že se dokáží dostat blízko k sobě
alespoň na tak dlouho, aby silná síla převážila předtím, než částice roze-
žene elektrostatická síla. Ve hvězdách se to děje tak nějak automaticky,
na Zemi jsou k tomu potřeba složitá zařízení, jako je např. tokamak.
Proto by studená fúze byla revolučním zdrojem energie. Fleischmann a
Pons tvrdili, že v elektrolytickém článku s palladiovou elektrodou a těž-
kou vodou (D2O) naměřili nadbytečné teplo a produkty jaderné reakce,
zejména neutrony, což by znamenalo, že skutečně dochází k jaderným
reakcím.

Krátce po zveřejnění proběhly desítky nezávislých pokusů, ale vět-
šina laboratoří nedokázala výsledky zopakovat. Další analýzy ukázaly, že
pozorované efekty lze vysvětlit chybami měření a chemickými procesy,
nikoli jadernou fúzí.

Případ způsobil obrovský mediální rozruch, ale vědecká komunita jej
nakonec odmítla, protože reprodukovatelnost je základním kritériem po-
tvrzení objevů.

K podobné situaci došlo poměrně nedávno: V červenci 2023 korejský
tým vedený Sukbaeem Lee a Ji-Hoonem Kimem zveřejnil objev materi-
álu LK-99, který se chová jako supravodič za pokojové teploty a normál-
ního tlaku [3]. Jako supravodiče označujeme materiály, které mají nulový
elektrický odpor, což je velmi užitečná vlastnost pro energetiku – např.
v urychlovači LHC v CERNu se používají supravodivé vodiče z niobu a
titanu (NbTi), které pracují při teplotě asi 1,9 K a umožňují vést proudy
kolem 12 kA bez odporu a ztrát tepla. Pokud bychom chtěli stejný proud
vést běžným měděným vodičem při pokojové teplotě, musel by mít ob-
rovský průřez – pro ztráty jen 1 kW na kilometr by vycházel průřez asi
2,5 m2, tedy kabel o průměru přibližně 1,8 metru. Jinak by docházelo
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k masivním tepelným ztrátám. Díky supravodivosti mohou mít vodiče
v LHC mnohem menší průměr.

Všechny známé supravodiče však mají jedno společné – fungují pouze
při velmi nízkých teplotách. Některým stačí chlazení kapalným dusíkem
na 77 K, ale jiné vyžadují ještě nižší teploty, dosažitelné jen pomocí ka-
palného helia. Proto by supravodič funkční za pokojové teploty znamenal
energetickou revoluci. O to větší rozruch vyvolal LK-99, složený z běžně
dostupných prvků (olovo, měď, fosfor a kyslík).

Obr. 2: Údajná levitace vzorku materiálu LK-99 (https://en.wikipedia.org/
wiki/LK-99)

Autoři publikovali na serveru arXiv dva články, v nichž uváděli, že
pozorovali nulový odpor a částečnou levitaci vzorků v magnetickém poli
– typický znak supravodivosti – a navíc přidali i návod na syntézu ma-
teriálu. Desítky laboratoří po celém světě se proto okamžitě pustily do
pokusů o reprodukci výsledků. Během několika týdnů se ale ukázalo, že
tvrzení nejsou správná: většina nezávislých týmů místo supravodivosti
naměřila chování typické pro polovodiče nebo izolanty. Podrobné ana-
lýzy nakonec ukázaly, že zvláštní magnetické projevy LK-99 souvisely
s přítomností nečistot z fosfidu mědi (Cu2P), který je feromagnetický, a
že původní experimenty měly metodické chyby. Do konce srpna 2023 byla
hypotéza o supravodivosti LK-99 považována za vyvrácenou a případ se
stal dalším příkladem, proč je nezávislá reprodukovatelnost výsledků pro
vědu zásadní – podobně jako u případu studené fúze z roku 1989.

Co se týče konspiračních teorií, asi nejpopulárnější teorií, která se
vzpírá nezávislému ověření výsledků, jsou různá zařízení využívající „vol-

Ročník 100 (2025), číslo 4 57

https://en.wikipedia.org/wiki/LK-99
https://en.wikipedia.org/wiki/LK-99


FYZIKA

nou energii“, tedy zařízení, která bychom bez uzardění mohli označit
jako perpetuum mobile. Obvykle se objevují vědecky znějící pojmy jako
nulový bod energie vakua, magnetické generátory nebo to, že jsou zaří-
zení inspirovaná Teslovými patenty (které ale podle jiných teorií údajně
skončily v trezorech zlotřilých korporací, které je před veřejností tají).
Typicky jsou prezentována videa, kde se točí motory, rozsvěcují žárovky
nebo napájejí spotřebiče „bez vstupní energie“. Společným znakem vět-
šiny těchto konstrukcí je, že neexistuje žádná ověřená dokumentace, pu-
blikace v recenzovaných časopisech ani nezávislé testy, které by jejich
funkčnost potvrdily. Často se ukáže, že zařízení ve skutečnosti využívá
skryté napájení nebo se spoléhá na akumulovanou energii, takže nedo-
chází k žádnému porušení fyzikálních zákonů.

Z fyzikálního hlediska je problém v tom, že tato zařízení často před-
pokládají porušení zákona zachování energie. Podle první věty termody-
namiky nelze vyrobit více energie, než do systému vstupuje, a jakékoliv
zařízení, které by trvale dodávalo energii bez paliva nebo jiného zdroje,
by muselo být perpetuum mobile prvního druhu – což odporuje experi-
mentálně potvrzeným fyzikálním principům. Přesto mají „zdroje volné
energie“ velký mediální i komerční ohlas. Na internetu se šíří schémata,
návody a videa, ale pokud se někdo pokusí tyto konstrukce nezávisle
reprodukovat, obvykle se ukáže, že zařízení nefunguje, nebo poskytuje
jen zanedbatelný výkon využívající běžné fyzikální jevy. Tento fenomén
ukazuje, jak důležitá je kritická analýza tvrzení a ověřování reproduko-
vatelností výsledků.

Peer review (recenzní řízení)

V předchozí kapitole jsme naťukli další důležitou vlastnost skutečných
vědeckých teorií – vycházejí v odborných časopisech. Ty totiž před zve-
řejněním článku provádějí tzv. peer review – článek se pošle dvěma až
třem odborníkům ze stejného oboru, kteří posoudí jeho kvalitu a meto-
diku. Recenzenti článek obvykle dostanou anonymizovaný, aby hodnotili
obsah a ne jméno autora. Proces je často dlouhý a pro autory úmorný –
recenzenti mohou navrhnout rozsáhlé úpravy, nebo dokonce článek za-
mítnout, pokud má zásadní metodické nedostatky. To je součástí nor-
mální vědecké praxe a důvod, proč jsou publikované články považovány
za ověřenější než tvrzení na blogu nebo na sociálních sítích.

V oblasti alternativní medicíny se často setkáváme s tvrzením, že po-
pis „zázračných léků proti rakovině“ v odborných časopisech chybí kvůli
spiknutí farmaceutických firem. To je typický znak konspiračních teorií:
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předpokládají, že „vládnoucí elity“ záměrně tají pravdu, aby chránily své
zisky. Homeopaté tento „problém“ vyřešili tak, že si založili vlastní časo-
pisy, například Indian Journal of Research in Homeopathy. Ten sice tvrdí,
že provádí peer review, ale recenzní proces probíhá téměř výhradně mezi
zastánci homeopatie, což znamená, že kritická kontrola chybí. Časopis
navíc publikuje téměř výhradně pozitivní výsledky, což je ve skutečné
vědě velmi podezřelé – i účinné léky někdy nefungují tak, jak se očeká-
valo, a o těchto neúspěších se běžně publikují články.

Podobných časopisů je více. Například Journal of Alternative and
Complementary Medicine otiskuje studie o homeopatii, akupunktuře
nebo „energetickém léčení“, ale často bez dostatečně přísné metodiky.
Další příkladem je řada predátorských časopisů, které vybírají poplatky
za publikování a prakticky neprovádějí recenzní řízení – článek otisknou
bez ohledu na jeho kvalitu. Oproti tomu prestižní časopisy jako Nature,
Science nebo The Lancet požadují přísnou metodiku a zveřejňují i ne-
gativní výsledky. Například The Lancet v roce 2005 publikoval rozsáh-
lou metaanalýzu 110 klinických studií homeopatie a dospěl k závěru, že
účinky homeopatie jsou srovnatelné s placebem [4]. To je dobrý příklad
toho, jak se ve vědě postupuje – nespoléhá se na jednotlivé „zázračné
studie“, ale porovnává se větší množství dat.

Podobné rozdíly mezi vědeckým přístupem a konspiračními interpre-
tacemi najdeme i v jiných oblastech. Například po útocích z 11. září
2001 se na internetu rozšířily stovky teorií o tom, že pád budov WTC
byl způsoben řízenými explozemi, nikoli nárazem letadel. Konspirační
weby často pracují se zpomalenými záběry, neověřenými svědectvími a
izolovanými „důkazy“, zatímco odborné studie publikované v recenzova-
ných časopisech, například zprávy NIST (National Institute of Standards
and Technology), analyzovaly tisíce fotografií, videozáznamů, svědectví
a dat z konstrukce budov. Výsledky ukazují, že zhroucení budov bylo dů-
sledkem kombinace strukturálního poškození a následných požárů, které
oslabily nosné konstrukce [5]. Tady je dobře vidět rozdíl: zatímco vědecké
publikace se snaží vyhodnotit všechna dostupná data a uvádějí i míru
nejistoty, konspirační teorie často vytrhávají dílčí informace z kontextu
a nedodržují metodické standardy.

Závěr

Ve vědě nejde o to, kdo má „pravdu“, ale o to, které tvrzení nejlépe
odpovídá pozorováním a ověřeným datům. Skutečné vědecké teorie mají
několik společných rysů: jsou konzistentní s ostatními poznatky, jejich
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závěry lze nezávisle reprodukovat a procházejí přísným recenzním ří-
zením. Konspirační teorie naopak často stojí na izolovaných tvrzeních,
ignorují data, která se jim nehodí, a jejich „výsledky“ nebývají ověřitelné
ani reprodukovatelné. To neznamená, že věda je neomylná – historie zná
mnoho případů, kdy se teorie musely upravit nebo nahradit. Rozdíl je
v tom, že ve vědě se teorie mění na základě nových důkazů, zatímco
konspirační teorie se často přizpůsobují tak, aby byly nefalzifikovatelné
a jejich závěry přežily bez ohledu na fakta. Zatímco věda své závěry ově-
řuje a kontroluje, konspirační teorie už dávno žije na Internetu vlastním
životem.
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Všechna lichá čísla jsou prvočísla

Adam Blažek, student FJFI ČVUT v Praze

Nejen ve fyzice, ale i v matematice je třeba mít se na pozoru, jak
ukazují následující hravé „důkazy“ , které zčásti vysbíral, zčásti vytvořil
autor článku.

Věta. Každé liché přirozené číslo větší než 1 je prvočíslo.

∀n ∈ N, n > 1: 2 ∤ n ⇒ n ∈ P

Důkaz (matematický). 3 je prvočíslo, 5 je prvočíslo, 7 je prvočíslo.
Zbytek důkazu je zřejmý, proto byl ponechán jako cvičení pro čtenáře.

Důkaz (teoreticky fyzikální). n je prvočíslo právě tehdy, pokud 2 ∤n∧
∧ 3 ∤n ∧ 4 ∤n ∧ . . . ∧ (n − 1) ∤n. Pro jednoduchost všechny členy kromě
prvního zanedbáme. Tedy pokud n není dělitelné dvěma, potom je při-
bližně prvočíslo.

Důkaz (experimentálně fyzikální). 3 je prvočíslo, 5 je prvočíslo, 7 je
prvočíslo, 9 je chyba měření, 11 je prvočíslo, 13 je prvočíslo, . . .

Důkaz (inženýrský). 3 je prvočíslo, 5 je prvočíslo, 7 je prvočíslo, 9 je
prvočíslo, 11 je prvočíslo, 13 je prvočíslo, . . .

Důkaz (anglický). 3 is an odd prime, 5 is an odd prime, 7 is an odd
prime, 9 is a very odd prime, 11 is an odd prime, 13 is an odd prime, . . .

Důkaz (marketingový). 3 je prvočíslo, 5 je prvočíslo, 7 je prvočíslo,
11 je prvočíslo, 13 je prvočíslo, . . .

Důkaz (statistický). 3 je prvočíslo (s pravděpodobností p = 1), 5 je
prvočíslo (p = 1), 7 je prvočíslo (p = 1), 9 je prvočíslo (p = 0,857), 11 je
prvočíslo (p = 1), 13 je prvočíslo (p = 1), . . .

Důkaz (demokratický). Nechť n je liché číslo větší než 1. Zřejmě žádné
z čísel od (n+1)/2 do n−1 nedělí n. Těchto čísel je (n−1)/2 z celkových
n− 2 čísel mezi 2 a n− 1. Jelikož

n− 1

2
>

n− 2

2
,

je n z nadpoloviční většiny prvočíslo.
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Důkaz (kapitalistický). Nechť n je liché číslo větší než 1. Zřejmě žádné
z čísel od n+1

2 do n− 1 nedělí n. Jelikož tato čísla jsou větší než všechna
ostatní čísla mezi 2 a n− 1, je n prvočíslo.

Důkaz (politicky korektní). Některým lichým číslům sice byla po na-
rození netolerantní společností přiřazena role složeného čísla, ale pokud
se sama identifikují jako prvočísla, potom jsou to samozřejmě prvočísla.
Pokud bude někdo vymazávat jejich identitu, zařídím, aby byl(a/o/x)
vyhozen(a/o/x) z práce a „zrušen(a/o/x)“ .

Důkaz (náboženský). Když Bůh tvořil vesmír, ze všech možných ves-
mírů si zvolil právě ten, kde všechna lichá čísla vyšší než 1 jsou prvočísla.
Není to úžasné?

Důkaz (právnický). V zákonu 1234/5678 §90 se píše, že všechna lichá
čísla vyšší než 1 jsou prvočísla.

Důkaz (pomocí kryptoměny). Uvedli jsme zpět do provozu starou
uhelnou elektrárnu a nechali několik dní běžet obrovskou serverovou
farmu, abychom ověřili, že první tři lichá čísla větší než 1 jsou skutečně
prvočísla. Dál jsme se zatím nedostali, protože na trhu došly grafické
karty. Pokud chcete vydělat na výsledcích našeho výzkumu, kupte si
OddPrimeCoinyTM, dokud jsou levné!

Důkaz (programátorský v jazyce C). 3 je prvočíslo, 5 je prvočíslo,
7 je prvočíslo, Segmentation fault (core dumped)

Důkaz (analytický). Nechť n je liché číslo větší než 1. Vezměme libo-
volné ε > 0. Zjevně pro dostatečně malá ε nikdy nenajdeme a, b ∈ N
taková, že

a · b = n+ ε.

Číslo n je tedy limitně prvočíslo.

Důkaz (pomocí teorie míry). Množina lichých čísel větších než 1,
která nejsou prvočísla, má nulovou Lebesgueovu míru, můžeme ji tedy
zanedbat.

Důkaz (pomocí teorie množin). Existuje bijekce mezi množinou li-
chých čísel větších než 1 a množinou prvočísel různých od 2, takže je
můžeme považovat za ekvivalentní.
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Objemový výkon aneb když pojem výkon nestačí

Věra Krajčová, FJFI ČVUT v Praze

Pokud pořizujeme jakýkoli elektrospotřebič do své domácnosti, jako
první nás zajímá jeho výkon. Určitě si radši pořídíme výkonnější rych-
lovarnou konvici (mikrovlnnou troubu, páječku, . . . ), která nám uvaří
ranní čaj (ohřeje jídlo, roztaví pájku, . . . ) za kratší dobu než konvici
sice levnější, ale s výkonem menším (a tím i delší dobou ohřevu). Ovšem
co kdybychom při stejném výkonu ohřívali mnohem větší objem vody?
Pro porovnání výkonu různých tepelných zdrojů je vhodné zavést novou
fyzikální veličinu objemový výkon. Níže si ukážeme proč.

Začneme pro nás tepelným zdrojem největším – Sluncem. Jeho zářivý
výkon se dá poměrně snadno vypočítat. Stačí si uvědomit, že Slunce
překvapivě můžeme považovat za absolutně černé těleso (ano, naše „bílé“
Slunce), a to proto, že množství fotonů vylétajících přímo z nitra Slunce
je zanedbatelné oproti počtu fotonů vylétajících z jeho povrchu.

Při této představě použijeme k výpočtu intenzity vyzařování Stefanův–
Boltzmannův zákon, který říká, že výkon P vyzařovaný z povrchu S je
úměrný čtvrté mocnině teploty T :

P = σ · S · T 4,

kde σ = 5,67 · 10−8 W ·m−2 ·K−4 je Stefanova–Boltzmannova konstanta.
Když vezmeme v úvahu, že povrch Slunce je cca 6 · 1018 m2 a jeho

teplota cca 5 780 K, pak dostaneme

P = σ · S · T 4 = 5,67 · 10−8 · 6 · 1018 · 57804 W .
= 3,8 · 1026 W.

Výkon Slunce je tedy zaokrouhleně 4 · 1026 W.
Objemový výkon získáme vydělením tohoto výsledku objemem zdroje

záření. Mohli bychom si myslet, že zdrojem je celé Slunce, ale není tomu
tak. Běžně používaný model Slunce říká, že podmínky dovolující uvol-
ňování fúzní energie, tj. dostatečný tlak, teplota a hustota plazmatu
směrem do středu Slunce, panují jen zhruba do 20 % jeho poloměru,
tedy do vzdálenosti 139 000 km od středu Slunce (poloměr Slunce je
RS = 696 340 km).

PV =
P

V
=

P
4
3pr

3
.
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PV,Slunce =
4 · 1026

4
3 · p · 1390000003 W ·m−3 .

= 36 W ·m−3.

Jde o průměrný výkon reaktoru Slunce, tedy jádra Slunce, na jednotku
objemu. Přičemž ale poblíž centra, kde je hodnota maximální, je obje-
mový výkon přibližně 276 W·m−3, a dále od centra exponenciálně klesá.

Po výletu do vesmíru se ale vraťme zpět do kuchyně. Jaký je objemový
výkon rychlovarné konvice? Pro konvici o průměrném výkonu 2 000 W,
která zahřívá objem cca 1,5 litru, dostaneme hodnotu

PV,konvice =
2000

0,0015
W ·m−3 .

= 1300 000 W ·m−3.

Pokud toto číslo porovnáme s průměrným objemovým výkonem reaktoru
Slunce, zjistíme, že konvice má objemový výkon 36 000krát větší!

Protože člověk je také tepelný stroj, můžeme pro něho objemový vý-
kon vypočítat obdobně. Průměrný doporučený denní příjem pro dospě-
lou osobu je cca 9 000 kJ, což odpovídá příjmu v průměru 104 J za každou
sekundu. Tedy příkon člověka je cca 104 W. Pokud vezmeme v úvahu, že
námi vybraná osoba má 80 kg, a přihlédneme k tomu, že z velké části je
člověk „složen“ z vody, pak je jeho objem cca 80 litrů a objemový výkon
člověka nám vyjde

PV,člověk =
104

0,08
W ·m−3 .

= 1300 W ·m−3,

což je sice tisíckrát méně než u konvice, ale skoro čtyřicetkrát více než
v reaktoru Slunce. Nicméně toto číslo je spíše objemovým příkonem než
výkonem. Na rozdíl od předchozích dvou „topných těles“, člověk poměrně
velkou část svého příkonu „vyzáří“ ve formě vykonané práce, svého po-
hybu apod., tedy objemový výkon člověka bude menší než jeho objemový
příkon.

Až vám zase někdo poví, že úplně záříte, nepřekvapí vás to. Budete
totiž vědět, že záříte jako pět Sluncí (přepočteno na objem), a to musí
být přece vidět! Jen to, prosím, nezačněte dotyčnému přepočítávat.
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